Development and propagation of hydrologic drought from meteorological and agricultural drought in the Mekong River Basin

被引:8
|
作者
Palanisamy, Bakkiyalakshmi [1 ]
Narasimhan, Balaji [2 ]
Paul, Sabu [3 ]
Srinivasan, Raghavan [4 ]
Wangpimool, Winai [5 ]
Sith, Ratino [5 ]
Sayasane, Rattykone [5 ]
机构
[1] Saveetha Engn Coll, Dept Agr Engn, Chennai, India
[2] Indian Inst Technol Madras, Dept Civil Engn, Chennai 620036, India
[3] City Alexandria, Dept Project Implementat, Alexandria, VA USA
[4] Texas A&M Univ, Dept Ecosyst Sci & Management, Spatial Sci Lab, College Stn, TX USA
[5] Mekong River Commiss Secretariat, Tech Support Div, Viangchan, Laos
关键词
agricultural drought; deficit indices; hydrological drought; propagation; SWAT; FLOW;
D O I
10.1002/hyp.14935
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Mekong River Basin (MRB) experiences extreme droughts and floods frequently, due to the precipitation deficit across the basin. The meteorological droughts will have a profound impact on the distribution of soil moisture and hence agricultural productivity, which will lead to the reduction of surface water resources. It is therefore important to evaluate the deficits in hydrometeorological extremes, that is, precipitation, soil moisture, and streamflow to help decipher how one drought results in the other. In this study, a streamflow deficit index (SDI) has been proposed and applied to understand the changes in hydrology due to the fluctuations in precipitation and soil moisture in the Mekong River Basin (MRB). The study used percent normal (PN), a precipitation deficit index, and soil moisture deficit index (SMDI) to identify the initiation and sustenance of hydrological drought using SDI. The SMDI was obtained from soil moisture simulated using the soil and water assessment tool (SWAT) for the periods of 1980-2008. The study results suggested that the proposed index was able to represent the historical river flow deficit that persisted in the basin in the year 1992. Increasing variation in the streamflow deficit in parts of Thailand, Lao PDR, Vietnam, and Cambodia from the year 1992 was also captured by SDI. The flooding year 2000, which resulted in an economic loss of over 200 million USD, was also effectively captured by the proposed index. The lengthening of the streamflow drought, a metric used to represent drought propagation, was shorter by at least 2 months in forested catchments compared with that of agricultural catchments, which implies that any deficit in precipitation and soil moisture, will have a severe impact on agricultural basins. Similarly, the attenuation of both agricultural and hydrological drought was found to be smaller in forested subbasins than those in agricultural subbasins. The findings of the study will be useful for the timely identification of extreme hydrological events and for planning mitigation measures.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Three-dimensional perspective on the characterization of the spatiotemporal propagation from meteorological to agricultural drought
    Feng, Kai
    Wang, Yingying
    Li, Yanbin
    Wang, Fei
    Su, Xiaoling
    Zhang, Zezhong
    Wu, Haijiang
    Zhang, Gengxi
    Li, Yubo
    Wang, Xiaowan
    AGRICULTURAL AND FOREST METEOROLOGY, 2024, 353
  • [32] Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea
    Muhammad Nouman Sattar
    Jin-Young Lee
    Ji-Yae Shin
    Tae-Woong Kim
    Water Resources Management, 2019, 33 : 2439 - 2452
  • [33] Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea
    Sattar, Muhammad Nouman
    Lee, Jin-Young
    Shin, Ji-Yae
    Kim, Tae-Woong
    WATER RESOURCES MANAGEMENT, 2019, 33 (07) : 2439 - 2452
  • [34] Characterization of future drought conditions in the Lower Mekong River Basin
    Thilakarathne, Madusanka
    Sridhar, Venkataramana
    WEATHER AND CLIMATE EXTREMES, 2017, 17 : 47 - 58
  • [35] Evolution of drought characteristics and propagation from meteorological to agricultural drought under the influences of climate change and human activities
    Li L.
    Peng Q.
    Li Z.
    Cai H.
    Environmental Science and Pollution Research, 2024, 31 (18) : 26713 - 26736
  • [36] Responses of agricultural drought to meteorological drought under different climatic zones and vegetation types
    Sun, Peng
    Liu, Ruilin
    Yao, Rui
    Shen, Hao
    Bian, Yaojin
    JOURNAL OF HYDROLOGY, 2023, 619
  • [37] Multifractal characterization of meteorological to agricultural drought propagation over India
    Pachore, Akshay Bajirao
    Remesan, Renji
    Kumar, Rohini
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [38] Probability-Based Propagation Characteristics from Meteorological to Hydrological Drought and Their Dynamics in the Wei River Basin, China
    Du, Meng
    Liu, Yongjia
    Huang, Shengzhi
    Zheng, Hao
    Huang, Qiang
    WATER, 2024, 16 (14)
  • [39] Propagation pathways from meteorological to agricultural drought in different climatic basins in iran
    Mohammadi Ghaleni, Mehdi
    Sharafi, Saeed
    Sadat-Noori, Mahmood
    Environmental Science and Pollution Research, 2024, 31 (49) : 59625 - 59641
  • [40] Propagation threshold from meteorological to agricultural drought and its potential influence factors
    Sun, Peng
    Liu, Ruilin
    Yao, Rui
    Gu, Xihui
    Gulakhmadov, Aminjon
    Kong, Dongdong
    Zhang, Xiang
    JOURNAL OF HYDROLOGY, 2025, 655