ChemoGraph: Interactive Visual Exploration of the Chemical Space

被引:2
作者
Kale, Bharat [1 ]
Clyde, Austin [2 ,4 ]
Sun, Maoyuan [1 ]
Ramanathan, Arvind [4 ]
Stevens, Rick [2 ,4 ]
Papka, Michael E. E. [3 ,4 ]
机构
[1] Northern Illinois Univ, Dept Comp Sci, De Kalb, IL 60115 USA
[2] Univ Chicago, Dept Comp Sci, Chicago, IL USA
[3] Univ Illinois, Dept Comp Sci, Chicago, IL USA
[4] Argonne Natl Lab, Lemont, IL USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
chemical space exploration; cheminformatics; multipartite graphs; data visualization; MOLECULAR DESIGN; VISUALIZATION; UNIVERSE; GRAPHS; ART;
D O I
10.1111/cgf.14807
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Exploratory analysis of the chemical space is an important task in the field of cheminformatics. For example, in drug discovery research, chemists investigate sets of thousands of chemical compounds in order to identify novel yet structurally similar synthetic compounds to replace natural products. Manually exploring the chemical space inhabited by all possible molecules and chemical compounds is impractical, and therefore presents a challenge. To fill this gap, we present ChemoGraph, a novel visual analytics technique for interactively exploring related chemicals. In ChemoGraph, we formalize a chemical space as a hypergraph and apply novel machine learning models to compute related chemical compounds. It uses a database to find related compounds from a known space and a machine learning model to generate new ones, which helps enlarge the known space. Moreover, ChemoGraph highlights interactive features that support users in viewing, comparing, and organizing computationally identified related chemicals. With a drug discovery usage scenario and initial expert feedback from a case study, we demonstrate the usefulness of ChemoGraph.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 73 条
  • [1] [Anonymous], 2015, P 2015 ACM INT WORKS, DOI DOI 10.1145/2713579.2713583
  • [2] The properties of known drugs .1. Molecular frameworks
    Bemis, GW
    Murcko, MA
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 1996, 39 (15) : 2887 - 2893
  • [3] Bohacek RS, 1996, MED RES REV, V16, P3, DOI 10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.3.CO
  • [4] 2-D
  • [5] Bohm Hans-Joachim, 2004, Drug Discov Today Technol, V1, P217, DOI 10.1016/j.ddtec.2004.10.009
  • [6] Dynamic graph exploration by interactively linked node-link diagrams and matrix visualizations
    Burch, Michael
    ten Brinke, Kiet Bennema
    Castella, Adrien
    Peters, Ghassen Karray Sebastiaan
    Shteriyanov, Vasil
    Vlasvinkel, Rinse
    [J]. VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2021, 4 (01)
  • [7] Clyde A., 2021, WORKSH LEARN MEAN RE
  • [8] Clyde A, 2020, Arxiv, DOI arXiv:2006.01171
  • [9] High-Throughput Virtual Screening and Validation of a SARS-CoV-2 Main Protease Noncovalent Inhibitor
    Clyde, Austin
    Galanie, Stephanie
    Kneller, Daniel W.
    Ma, Heng
    Babuji, Yadu
    Blaiszik, Ben
    Brace, Alexander
    Brettin, Thomas
    Chard, Kyle
    Chard, Ryan
    Coates, Leighton
    Foster, Ian
    Hauner, Darin
    Kertesz, Vilmos
    Kumar, Neeraj
    Lee, Hyungro
    Li, Zhuozhao
    Merzky, Andre
    Schmidt, Jurgen G.
    Tan, Li
    Titov, Mikhail
    Trifan, Anda
    Turilli, Matteo
    Van Dam, Hubertus
    Chennubhotla, Srinivas C.
    Jha, Shantenu
    Kovalevsky, Andrey
    Ramanathan, Arvind
    Head, Martha S.
    Stevens, Rick
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (01) : 116 - 128
  • [10] Network-Thinking: Graphs to Analyze Microbial Complexity and Evolution
    Corel, Eduardo
    Lopez, Philippe
    Meheust, Raphael
    Bapteste, Eric
    [J]. TRENDS IN MICROBIOLOGY, 2016, 24 (03) : 224 - 237