Automatic detection of Parkinson's disease from power spectral density of electroencephalography (EEG) signals using deep learning model

被引:7
|
作者
Goker, Hanife [1 ]
机构
[1] Gazi Univ, Hlth Serv Vocat Coll, TR-06830 Ankara, Turkiye
关键词
Deep learning; Signal processing; Electroencephalography; Parkinson's disease; Spectral analysis; CLASSIFICATION; FEATURES;
D O I
10.1007/s13246-023-01284-x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Parkinson's disease (PD) is characterized by slowed movements, speech disorders, an inability to control muscle movements, and tremors in the hands and feet. In the early stages of PD, the changes in these motor signs are very vague, so an objective and accurate diagnosis is difficult. The disease is complex, progressive, and very common. There are more than 10 million people worldwide suffering from PD. In this study, an EEG-based deep learning model was proposed for the automatic detection of PD to support experts. The EEG dataset comprises signals recorded by the University of Iowa from 14 PD patients and 14 healthy controls. First of all, the power spectral density values (PSDs) of the frequencies between 1 and 49 Hz of the EEG signals were calculated separately using periodogram, welch, and multitaper spectral analysis methods. 49 feature vectors were extracted for each of the three different experiments. Then, the performances of support vector machine, random forest, k-nearest neighbor, and bidirectional long-short-term memory (BiLSTM) algorithms were compared using the PSDs feature vectors. After the comparison, the model integrating welch spectral analysis and the BiLSTM algorithm showed the highest performance as a result of the experiments. The deep learning model achieved satisfactory performance with 0.965 specificity, 0.994 sensitivity, 0.964 precision, 0.978 f1-score, 0.958 Matthews correlation coefficient, and 97.92% accuracy. The study is a promising attempt to detect PD from EEG signals and it also provides evidence that deep learning algorithms are more effective than machine learning algorithms for EEG signal analysis.
引用
收藏
页码:1163 / 1174
页数:12
相关论文
共 50 条
  • [31] Diagnosis of Epilepsy Disease with Deep Learning Methods Using EEG Signals
    Genis, Yigithan
    Aydin, Eda Akman
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [32] Automatic detection of abnormal EEG signals using multiscale features with ensemble learning
    Wu, Tao
    Kong, Xiangzeng
    Zhong, Yunning
    Chen, Lifei
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [33] LSTMNCP: lie detection from EEG signals with novel hybrid deep learning method
    Aslan, Musa
    Baykara, Muhammet
    Alakus, Talha Burak
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 31655 - 31671
  • [34] Parkinson's disease detection from voice signals using adaptive frequency attribute topology
    Zhang, Tao
    Tian, Jing
    Xue, Zaifa
    Guo, Xiaonan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [35] Detection of ADHD from EEG signals using new hybrid decomposition and deep learning techniques
    Esas, Mustafa Yasin
    Latifoglu, Fatma
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (03)
  • [36] Parkinson's disease detection and classification using EEG based on deep CNN-LSTM model
    Li, Kuan
    Ao, Bin
    Wu, Xin
    Wen, Qing
    Ul Haq, Ejaz
    Yin, Jianping
    BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, 2024, 40 (03) : 2577 - 2596
  • [37] Emotion Detection from EEG Signals Using Machine Deep Learning Models
    Fernandes, Joao Vitor Marques Rabelo
    de Alexandria, Auzuir Ripardo
    Marques, Joao Alexandre Lobo
    de Assis, Debora Ferreira
    Motta, Pedro Crosara
    Silva, Bruno Riccelli dos Santos
    BIOENGINEERING-BASEL, 2024, 11 (08):
  • [38] A review of machine learning and deep learning for Parkinson’s disease detection
    Hajar Rabie
    Moulay A. Akhloufi
    Discover Artificial Intelligence, 5 (1):
  • [39] The subthalamic nucleus in Parkinson’s disease: power spectral density analysis of neural intraoperative signals
    A. Pesenti*
    M. Rohr*
    M. Egidi
    P. Rampini
    F. Tamma
    M. Locatelli
    E. Caputo
    V. Chiesa
    A. Bianchi
    S. Barbieri
    G. Baselli
    A. Priori
    Neurological Sciences, 2004, 24 : 367 - 374
  • [40] The subthalamic nucleus in Parkinson's disease: power spectral density analysis of neural intraoperative signals
    Pesenti, A
    Rohr, M
    Egidi, M
    Rampini, P
    Tamma, F
    Locatelli, M
    Caputo, E
    Chiesa, V
    Bianchi, A
    Barbieri, S
    Baselli, G
    Priori, A
    NEUROLOGICAL SCIENCES, 2004, 24 (06) : 367 - 374