Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification

被引:39
作者
Bifarin, Olatomiwa O. [1 ,2 ]
机构
[1] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30602 USA
基金
英国科研创新办公室;
关键词
METABOLIGHTS; REPOSITORY;
D O I
10.1371/journal.pone.0284315
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Machine learning (ML) models are used in clinical metabolomics studies most notably for biomarker discoveries, to identify metabolites that discriminate between a case and control group. To improve understanding of the underlying biomedical problem and to bolster confidence in these discoveries, model interpretability is germane. In metabolomics, partial least square discriminant analysis (PLS-DA) and its variants are widely used, partly due to the model's interpretability with the Variable Influence in Projection (VIP) scores, a global interpretable method. Herein, Tree-based Shapley Additive explanations (SHAP), an interpretable ML method grounded in game theory, was used to explain ML models with local explanation properties. In this study, ML experiments (binary classification) were conducted for three published metabolomics datasets using PLS-DA, random forests, gradient boosting, and extreme gradient boosting (XGBoost). Using one of the datasets, PLS-DA model was explained using VIP scores, while one of the best-performing models, a random forest model, was interpreted using Tree SHAP. The results show that SHAP has a more explanation depth than PLS-DA's VIP, making it a powerful method for rationalizing machine learning predictions from metabolomics studies.
引用
收藏
页数:21
相关论文
共 49 条
[1]   Multiclass feature selection with metaheuristic optimization algorithms: a review [J].
Akinola, Olatunji O. ;
Ezugwu, Absalom E. ;
Agushaka, Jeffrey O. ;
Abu Zitar, Raed ;
Abualigah, Latih .
NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22) :19751-19790
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[4]   Metabolomic profiles predict individual multidisease outcomes [J].
Buergel, Thore ;
Steinfeldt, Jakob ;
Ruyoga, Greg ;
Pietzner, Maik ;
Bizzarri, Daniele ;
Vojinovic, Dina ;
zu Belzen, Julius Upmeier ;
Loock, Lukas ;
Kittner, Paul ;
Christmann, Lara ;
Hollmann, Noah ;
Strangalies, Henrik ;
Braunger, Jana M. ;
Wild, Benjamin ;
Chiesa, Scott T. ;
Spranger, Joachim ;
Klostermann, Fabian ;
van den Akker, Erik B. ;
Trompet, Stella ;
Mooijaart, Simon P. ;
Sattar, Naveed ;
Jukema, J. Wouter ;
Lavrijssen, Birgit ;
Kavousi, Maryam ;
Ghanbari, Mohsen ;
Ikram, Mohammad A. ;
Slagboom, Eline ;
Kivimaki, Mika ;
Langenberg, Claudia ;
Deanfield, John ;
Eils, Roland ;
Landmesser, Ulf .
NATURE MEDICINE, 2022, 28 (11) :2309-+
[5]   POINTS OF SIGNIFICANCE Statistics versus machine learning [J].
Bzdok, Danilo ;
Altman, Naomi ;
Krzywinski, Martin .
NATURE METHODS, 2018, 15 (04) :232-233
[6]   POINTS OF SIGNIFICANCE Machine learning: a primer [J].
Bzdok, Danilo ;
Krzywinski, Martin ;
Altman, Naomi .
NATURE METHODS, 2017, 14 (12) :1119-1120
[7]   An interpretable machine learning method for supporting ecosystem management: Application to species distribution models of freshwater macroinvertebrates [J].
Cha, YoonKyung ;
Shin, Jihoon ;
Go, ByeongGeon ;
Lee, Dae-Seong ;
Kim, YoungWoo ;
Kim, TaeHo ;
Park, Young-Seuk .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 291
[8]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[9]   Investigation of Metabolomic Blood Biomarkers for Detection of Adenocarcinoma Lung Cancer [J].
Fahrmann, Johannes F. ;
Kim, Kyoungmi ;
DeFelice, Brian C. ;
Taylor, Sandra L. ;
Gandara, David R. ;
Yoneda, Ken Y. ;
Cooke, David T. ;
Fiehn, Oliver ;
Kelly, Karen ;
Miyamoto, Suzanne .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2015, 24 (11) :1716-1723
[10]  
Fisher A, 2019, Arxiv, DOI [arXiv:1801.01489, 10.48550/ARXIV.1801.01489, DOI 10.48550/ARXIV.1801.01489]