Development and Validation of an Explainable Machine Learning-Based Prediction Model for Drug-Food Interactions from Chemical Structures

被引:34
|
作者
Kha, Quang-Hien [1 ,2 ]
Le, Viet-Huan [1 ,2 ,3 ]
Hung, Truong Nguyen Khanh [4 ]
Nguyen, Ngan Thi Kim [5 ]
Le, Nguyen Quoc Khanh [2 ,6 ,7 ,8 ]
机构
[1] Taipei Med Univ, Coll Med, Int PhD Program Med, Taipei 110, Taiwan
[2] Taipei Med Univ, AIBioMed Res Grp, Taipei 110, Taiwan
[3] Khanh Hoa Gen Hosp, Dept Thorac Surg, Nha Trang 65000, Vietnam
[4] Cho Ray Hosp, Dept Orthoped & Trauma, Ho Chi Minh City 70000, Vietnam
[5] Natl Taiwan Normal Univ, Undergraduate Program Nutr Sci, Taipei 106, Taiwan
[6] Taipei Med Univ, Coll Med, Profess Master Program Artificial Intelligence Med, Taipei 110, Taiwan
[7] Taipei Med Univ, Res Ctr Artificial Intelligence Med, Taipei 110, Taiwan
[8] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110, Taiwan
关键词
adverse food reaction; chemical informatics; drug-food interactions; drug-nutrient interactions; DrugBank; explainable artificial intelligence; FooDB; machine learning; precision medicine; simplified molecular-input line-entry system; GRAPEFRUIT JUICE; ALCOHOL-CONSUMPTION; VITAMIN-K; ABSORPTION; HEPATOTOXICITY; METHOTREXATE; WARFARIN; HUMANS; RISK;
D O I
10.3390/s23083962
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Possible drug-food constituent interactions (DFIs) could change the intended efficiency of particular therapeutics in medical practice. The increasing number of multiple-drug prescriptions leads to the rise of drug-drug interactions (DDIs) and DFIs. These adverse interactions lead to other implications, e.g., the decline in medicament's effect, the withdrawals of various medications, and harmful impacts on the patients' health. However, the importance of DFIs remains underestimated, as the number of studies on these topics is constrained. Recently, scientists have applied artificial intelligence-based models to study DFIs. However, there were still some limitations in data mining, input, and detailed annotations. This study proposed a novel prediction model to address the limitations of previous studies. In detail, we extracted 70,477 food compounds from the FooDB database and 13,580 drugs from the DrugBank database. We extracted 3780 features from each drug-food compound pair. The optimal model was eXtreme Gradient Boosting (XGBoost). We also validated the performance of our model on one external test set from a previous study which contained 1922 DFIs. Finally, we applied our model to recommend whether a drug should or should not be taken with some food compounds based on their interactions. The model can provide highly accurate and clinically relevant recommendations, especially for DFIs that may cause severe adverse events and even death. Our proposed model can contribute to developing more robust predictive models to help patients, under the supervision and consultants of physicians, avoid DFI adverse effects in combining drugs and foods for therapy.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Development and validation of a machine learning-based nomogram for prediction of intrahepatic cholangiocarcinoma in patients with intrahepatic lithiasis
    Shen, Xian
    Zhao, Huanhu
    Jin, Xing
    Chen, Junyu
    Yu, Zhengping
    Ramen, Kuvaneshan
    Zheng, Xiangwu
    Wu, Xiuling
    Shan, Yunfeng
    Bai, Jianling
    Zhang, Qiyu
    Zeng, Qiqiang
    HEPATOBILIARY SURGERY AND NUTRITION, 2021, 10 (06) : 749 - +
  • [42] Machine Learning-Based Stacking Ensemble Model for Prediction of Heart Disease with Explainable AI and K-Fold Cross-Validation: A Symmetric Approach
    Sultan, Sara Qamar
    Javaid, Nadeem
    Alrajeh, Nabil
    Aslam, Muhammad
    SYMMETRY-BASEL, 2025, 17 (02):
  • [43] Recent development of machine learning models for the prediction of drug-drug interactions
    Hong, Eujin
    Jeon, Junhyeok
    Kim, Hyun Uk
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (02) : 276 - 285
  • [44] Recent development of machine learning models for the prediction of drug-drug interactions
    Eujin Hong
    Junhyeok Jeon
    Hyun Uk Kim
    Korean Journal of Chemical Engineering, 2023, 40 : 276 - 285
  • [45] Development of a machine learning-based acuity score prediction model for virtual care settings
    Justin N. Hall
    Ron Galaev
    Marina Gavrilov
    Shawn Mondoux
    BMC Medical Informatics and Decision Making, 23
  • [46] Development and External Validation of a Machine Learning Model for Prediction of Potential Transfer to the PICU
    Mayampurath, Anoop
    Sanchez-Pinto, L. Nelson
    Hegermiller, Emma
    Erondu, Amarachi
    Carey, Kyle
    Jani, Priti
    Gibbons, Robert
    Edelson, Dana
    Churpek, Matthew M.
    PEDIATRIC CRITICAL CARE MEDICINE, 2022, 23 (07) : 514 - 523
  • [47] A machine learning-based prediction model for gout in hyperuricemics: a nationwide cohort study
    Brikman, Shay
    Serfaty, Liel
    Abuhasira, Ran
    Schlesinger, Naomi
    Bieber, Amir
    Rappoport, Nadav
    RHEUMATOLOGY, 2024, 63 (09) : 2411 - 2417
  • [48] Development of a machine learning-based acuity score prediction model for virtual care settings
    Hall, Justin N.
    Galaev, Ron
    Gavrilov, Marina
    Mondoux, Shawn
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [49] Development of Patent Technology Prediction Model Based on Machine Learning
    Lee, Chih-Wei
    Tao, Feng
    Ma, Yu-Yu
    Lin, Hung-Lung
    AXIOMS, 2022, 11 (06)
  • [50] Development and validation of a machine learning-based predictive model to improve the prediction of inguinal status of anal cancer patients: A preliminary report
    De Bari, Berardino
    Vallati, Mauro
    Gatta, Roberto
    Lestrade, Laetitia
    Manfrida, Stefania
    Carrie, Christian
    Valentini, Vincenzo
    ONCOTARGET, 2017, 8 (65) : 108509 - 108521