Development and Validation of an Explainable Machine Learning-Based Prediction Model for Drug-Food Interactions from Chemical Structures

被引:34
|
作者
Kha, Quang-Hien [1 ,2 ]
Le, Viet-Huan [1 ,2 ,3 ]
Hung, Truong Nguyen Khanh [4 ]
Nguyen, Ngan Thi Kim [5 ]
Le, Nguyen Quoc Khanh [2 ,6 ,7 ,8 ]
机构
[1] Taipei Med Univ, Coll Med, Int PhD Program Med, Taipei 110, Taiwan
[2] Taipei Med Univ, AIBioMed Res Grp, Taipei 110, Taiwan
[3] Khanh Hoa Gen Hosp, Dept Thorac Surg, Nha Trang 65000, Vietnam
[4] Cho Ray Hosp, Dept Orthoped & Trauma, Ho Chi Minh City 70000, Vietnam
[5] Natl Taiwan Normal Univ, Undergraduate Program Nutr Sci, Taipei 106, Taiwan
[6] Taipei Med Univ, Coll Med, Profess Master Program Artificial Intelligence Med, Taipei 110, Taiwan
[7] Taipei Med Univ, Res Ctr Artificial Intelligence Med, Taipei 110, Taiwan
[8] Taipei Med Univ Hosp, Translat Imaging Res Ctr, Taipei 110, Taiwan
关键词
adverse food reaction; chemical informatics; drug-food interactions; drug-nutrient interactions; DrugBank; explainable artificial intelligence; FooDB; machine learning; precision medicine; simplified molecular-input line-entry system; GRAPEFRUIT JUICE; ALCOHOL-CONSUMPTION; VITAMIN-K; ABSORPTION; HEPATOTOXICITY; METHOTREXATE; WARFARIN; HUMANS; RISK;
D O I
10.3390/s23083962
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Possible drug-food constituent interactions (DFIs) could change the intended efficiency of particular therapeutics in medical practice. The increasing number of multiple-drug prescriptions leads to the rise of drug-drug interactions (DDIs) and DFIs. These adverse interactions lead to other implications, e.g., the decline in medicament's effect, the withdrawals of various medications, and harmful impacts on the patients' health. However, the importance of DFIs remains underestimated, as the number of studies on these topics is constrained. Recently, scientists have applied artificial intelligence-based models to study DFIs. However, there were still some limitations in data mining, input, and detailed annotations. This study proposed a novel prediction model to address the limitations of previous studies. In detail, we extracted 70,477 food compounds from the FooDB database and 13,580 drugs from the DrugBank database. We extracted 3780 features from each drug-food compound pair. The optimal model was eXtreme Gradient Boosting (XGBoost). We also validated the performance of our model on one external test set from a previous study which contained 1922 DFIs. Finally, we applied our model to recommend whether a drug should or should not be taken with some food compounds based on their interactions. The model can provide highly accurate and clinically relevant recommendations, especially for DFIs that may cause severe adverse events and even death. Our proposed model can contribute to developing more robust predictive models to help patients, under the supervision and consultants of physicians, avoid DFI adverse effects in combining drugs and foods for therapy.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Deep learning improves prediction of drug-drug and drug-food interactions
    Ryu, Jae Yong
    Kim, Hyun Uk
    Lee, Sang Yup
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (18) : E4304 - E4311
  • [2] Machine learning-based diagnostic prediction of IgA nephropathy: model development and validation study
    Noda, Ryunosuke
    Ichikawa, Daisuke
    Shibagaki, Yugo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Developing an Explainable Machine Learning-Based Thyroid Disease Prediction Model
    Arjaria, Siddhartha Kumar
    Rathore, Abhishek Singh
    Chaubey, Gyanendra
    INTERNATIONAL JOURNAL OF BUSINESS ANALYTICS, 2022, 9 (03)
  • [4] Development and Validation of a Machine Learning-Based Prediction Model for Detection of Biliary Atresia
    Choi, Ho Jung
    Kim, Yeong Eun
    Namgoong, Jung-Man
    Kim, Inki
    Park, Jun Sung
    Baek, Woo Im
    Lee, Byong Sop
    Yoon, Hee Mang
    Cho, Young Ah
    Lee, Jin Seong
    Shim, Jung Ok
    Oh, Seak Hee
    Moon, Jin Soo
    Ko, Jae Sung
    Kim, Dae Yeon
    Kim, Kyung Mo
    GASTRO HEP ADVANCES, 2023, 2 (06): : 778 - 787
  • [5] Machine learning-based prediction of the post-thrombotic syndrome: Model development and validation study
    Yu, Tao
    Shen, Runnan
    You, Guochang
    Lv, Lin
    Kang, Shimao
    Wang, Xiaoyan
    Xu, Jiatang
    Zhu, Dongxi
    Xia, Zuqi
    Zheng, Junmeng
    Huang, Kai
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [6] Machine Learning-Based Prediction of Drug-Drug Interactions for Histamine Antagonist Using Hybrid Chemical Features
    Dang, Luong Huu
    Dung, Nguyen Tan
    Quang, Ly Xuan
    Hung, Le Quang
    Le, Ngoc Hoang
    Le, Nhi Thao Ngoc
    Diem, Nguyen Thi
    Nga, Nguyen Thi Thuy
    Hung, Shih-Han
    Le, Nguyen Quoc Khanh
    CELLS, 2021, 10 (11)
  • [7] Development and application of a machine learning-based antenatal depression prediction model
    Hu, Chunfei
    Lin, Hongmei
    Xu, Yupin
    Fu, Xukun
    Qiu, Xiaojing
    Hu, Siqian
    Jin, Tong
    Xu, Hualin
    Luo, Qiong
    JOURNAL OF AFFECTIVE DISORDERS, 2025, 375 : 137 - 147
  • [8] Development and validation of a machine learning-based postpartum depression prediction model: A nationwide cohort study
    Hochman, Eldar
    Feldman, Becca
    Weizman, Abraham
    Krivoy, Amir
    Gur, Shay
    Barzilay, Eran
    Gabay, Hagit
    Levy, Joseph
    Levinkron, Ohad
    Lawrence, Gabriella
    DEPRESSION AND ANXIETY, 2021, 38 (04) : 400 - 411
  • [9] Explainable machine learning-based prediction model for dynamic resilient modulus of subgrade soils
    Li, Xiangyang
    Liu, Wenjun
    Xu, Changjing
    Liu, Ning
    Feng, Shuaike
    Zhang, Xin
    Li, Yanbin
    Hao, Jianwen
    TRANSPORTATION GEOTECHNICS, 2024, 49
  • [10] Establishment and Validation of a Machine Learning-Based Prediction Model for Termination of via Cesarean Section
    Zhang, Rui
    Sheng, Weixuan
    Liu, Feiran
    Zhang, Jin
    Bai, Wenpei
    INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2023, 16 : 5567 - 5578