Dynamic Equilibrium at the HCOOH-Saturated TiO2(110)-Water Interface

被引:9
作者
Nunes, Fernanda Brandalise [1 ]
Comini, Nicolo [2 ,3 ]
Diulus, Trey [2 ,3 ]
Huthwelker, Thomas [3 ]
Iannuzzi, Marcella [1 ]
Osterwalder, Jurg [2 ]
Novotny, Zbynek [2 ,3 ,4 ]
机构
[1] Univ Zurich, Dept Chem, CH-8057 Zurich, Switzerland
[2] Univ Zurich, Dept Phys, CH-8057 Zurich, Switzerland
[3] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
[4] Empa Swiss Fed Labs Mat Sci & Technol, Lab Joining Technol & Corros, CH-8600 Dubendorf, Switzerland
基金
瑞士国家科学基金会;
关键词
SURFACE SCIENCE; FORMIC-ACID; TIO2; 110; FORMATE; WATER; DECOMPOSITION; ADSORPTION; ENERGY; LEADS;
D O I
10.1021/acs.jpclett.2c03788
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carboxylic acids bind to titanium dioxide (TiO2) dissociatively, forming surface superstructures that give rise to a (2 x 1) pattern detected by low-energy electron diffraction. Exposing this system to water, however, leads to a loss of the highly ordered surface structure. The formate-covered surface was investigated by a combination of diffraction and spectroscopy techniques, together with static and dynamic ab initio simulations, with the conclusion that a dynamic equilibrium exists between adsorbed formic acid and water molecules. This equilibrium process is an important factor for obtaining a better understanding of controlling the self-cleaning properties of TiO2,because the formic acid monolayer is responsible for the amphiphilic character of the surface.
引用
收藏
页码:3132 / 3138
页数:7
相关论文
共 26 条
[1]   High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution [J].
Balajka, Jan ;
Hines, Melissa A. ;
DeBenedetti, William J. I. ;
Komora, Mojmir ;
Pavelec, Jiri ;
Schmid, Michael ;
Diebold, Ulrike .
SCIENCE, 2018, 361 (6404) :786-788
[2]   Formic acid adsorption and decomposition on TiO2(110) and on Pd/TiO2(110) model catalysts [J].
Bowker, M ;
Stone, P ;
Bennett, R ;
Perkins, N .
SURFACE SCIENCE, 2002, 511 (1-3) :435-448
[3]   Factors influencing surface carbon contamination in ambient-pressure x-ray photoelectron spectroscopy experiments [J].
Comini, Nicolo' ;
Huthwelker, Thomas ;
Diulus, J. Trey ;
Osterwalder, Jurg ;
Novotny, Zbynek .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (04)
[4]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[5]   TiO2 photocatalysis and related surface phenomena [J].
Fujishima, Akira ;
Zhang, Xintong ;
Tryk, Donald A. .
SURFACE SCIENCE REPORTS, 2008, 63 (12) :515-582
[6]   X-ray photoelectron spectroscopy: Towards reliable binding energy referencing [J].
Greczynski, G. ;
Hultman, L. .
PROGRESS IN MATERIALS SCIENCE, 2020, 107
[7]   A surface science perspective on TiO2 photocatalysis [J].
Henderson, Michael A. .
SURFACE SCIENCE REPORTS, 2011, 66 (6-7) :185-297
[8]  
Hussain H, 2017, NAT MATER, V16, P461, DOI [10.1038/nmat4793, 10.1038/NMAT4793]
[9]   Low energy electron diffraction study of TiO2(110)(2x1)-[HCOO]- [J].
Lindsay, R. ;
Tomic, S. ;
Wander, A. ;
Garcia-Mendez, M. ;
Thornton, G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (36) :14154-14157
[10]  
LyndenBell RM, 2010, WATER AND LIFE: THE UNIQUE PROPERTIES OF H2O, P1, DOI 10.1201/EBK1439803561-f