Update on the Use of Artificial Intelligence in Hepatobiliary MR Imaging

被引:6
作者
Nakaura, Takeshi [1 ,2 ]
Kobayashi, Naoki [1 ]
Yoshida, Naofumi [1 ]
Shiraishi, Kaori [1 ]
Uetani, Hiroyuki [1 ]
Nagayama, Yasunori [1 ]
Kidoh, Masafumi [1 ]
Hirai, Toshinori [1 ]
机构
[1] Kumamoto Univ, Grad Sch Med Sci, Dept Diagnost Radiol, Kumamoto, Kumamoto, Japan
[2] Kumamoto Univ Hosp, Radiol, 1-1-1 Honjo,Chuo Ku, Kumamoto, Kumamoto 8608556, Japan
关键词
artificial intelligence; deep learning; machine learning; magnetic resonance imaging; CONVOLUTIONAL NEURAL-NETWORK; RADIOMICS; APPROXIMATE; TUMOR; MODEL;
D O I
10.2463/mrms.rev.2022-0102
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The application of machine learning (ML) and deep learning (DL) in radiology has expanded exponen-tially. In recent years, an extremely large number of studies have reported about the hepatobiliary domain. Its applications range from differential diagnosis to the diagnosis of tumor invasion and prediction of treatment response and prognosis. Moreover, it has been utilized to improve the image quality of DL reconstruction. However, most clinicians are not familiar with ML and DL, and previous studies about these concepts are relatively challenging to understand. In this review article, we aimed to explain the concepts behind ML and DL and to summarize recent achievements in their use in the hepatobiliary region.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [31] Artificial intelligence in multiparametric magnetic resonance imaging: A review
    Li, Cheng
    Li, Wen
    Liu, Chenyang
    Zheng, Hairong
    Cai, Jing
    Wang, Shanshan
    MEDICAL PHYSICS, 2022, 49 (10) : E1024 - E1054
  • [32] Artificial intelligence in veterinary diagnostic imaging: Perspectives and limitations
    Burti, Silvia
    Banzato, Tommaso
    Coghlan, Simon
    Wodzinski, Marek
    Bendazzoli, Margherita
    Zotti, Alessandro
    RESEARCH IN VETERINARY SCIENCE, 2024, 175
  • [33] A systematic review on the use of artificial intelligence in gynecologic imaging-Background, state of the art, and future directions
    Shrestha, Pallabi
    Poudyal, Bhavya
    Yadollahi, Sepideh
    Wright, Darryl E.
    Gregory, Adriana, V
    Warner, Joshua D.
    Kor, Panagiotis
    Green, Isabel C.
    Rassier, Sarah L.
    Mariani, Andrea
    Kim, Bohyun
    Laughlin-Tommaso, Shannon K.
    Kline, Timothy L.
    GYNECOLOGIC ONCOLOGY, 2022, 166 (03) : 596 - 605
  • [34] Use of Artificial Intelligence in Imaging Dementia
    Aljuhani, Manal
    Ashraf, Azhaar
    Edison, Paul
    CELLS, 2024, 13 (23)
  • [35] Liver Transplant in Patients with Hepatocarcinoma: Imaging Guidelines and Future Perspectives Using Artificial Intelligence
    Pomohaci, Mihai Dan
    Grasu, Mugur Cristian
    Dumitru, Radu Lucian
    Toma, Mihai
    Lupescu, Ioana Gabriela
    DIAGNOSTICS, 2023, 13 (09)
  • [36] Use of Artificial Intelligence in Dermatology
    De, Abhishek
    Sarda, Aarti
    Gupta, Sachi
    Das, Sudip
    INDIAN JOURNAL OF DERMATOLOGY, 2020, 65 (05) : 352 - 357
  • [37] Use of artificial intelligence in the imaging of sarcopenia: A narrative review of current status and perspectives
    Rozynek, Milosz
    Kucybala, Iwona
    Urbanik, Andrzej
    Wojciechowski, Wadim
    NUTRITION, 2021, 89
  • [38] A primer on artificial intelligence in pancreatic imaging
    Ahmed, Taha M.
    Kawamoto, Satomi
    Hruban, Ralph H.
    Fishman, Elliot K.
    Soyer, Philippe
    Chu, Linda C.
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (09) : 435 - 447
  • [39] The Role of Artificial Intelligence in Cardiac Imaging
    Onnis, Carlotta
    van Assen, Marly
    Muscogiuri, Emanuele
    Muscogiuri, Giuseppe
    Gershon, Gabrielle
    Saba, Luca
    De Cecco, Carlo N.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2024, 62 (03) : 473 - 488
  • [40] Artificial Intelligence in Veterinary Imaging: An Overview
    Pereira, Ana Ines
    Franco-Goncalo, Pedro
    Leite, Pedro
    Ribeiro, Alexandrine
    Alves-Pimenta, Maria Sofia
    Colaco, Bruno
    Loureiro, Catia
    Goncalves, Lio
    Filipe, Vitor
    Ginja, Mario
    VETERINARY SCIENCES, 2023, 10 (05)