Update on the Use of Artificial Intelligence in Hepatobiliary MR Imaging

被引:6
|
作者
Nakaura, Takeshi [1 ,2 ]
Kobayashi, Naoki [1 ]
Yoshida, Naofumi [1 ]
Shiraishi, Kaori [1 ]
Uetani, Hiroyuki [1 ]
Nagayama, Yasunori [1 ]
Kidoh, Masafumi [1 ]
Hirai, Toshinori [1 ]
机构
[1] Kumamoto Univ, Grad Sch Med Sci, Dept Diagnost Radiol, Kumamoto, Kumamoto, Japan
[2] Kumamoto Univ Hosp, Radiol, 1-1-1 Honjo,Chuo Ku, Kumamoto, Kumamoto 8608556, Japan
关键词
artificial intelligence; deep learning; machine learning; magnetic resonance imaging; CONVOLUTIONAL NEURAL-NETWORK; RADIOMICS; APPROXIMATE; TUMOR; MODEL;
D O I
10.2463/mrms.rev.2022-0102
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The application of machine learning (ML) and deep learning (DL) in radiology has expanded exponen-tially. In recent years, an extremely large number of studies have reported about the hepatobiliary domain. Its applications range from differential diagnosis to the diagnosis of tumor invasion and prediction of treatment response and prognosis. Moreover, it has been utilized to improve the image quality of DL reconstruction. However, most clinicians are not familiar with ML and DL, and previous studies about these concepts are relatively challenging to understand. In this review article, we aimed to explain the concepts behind ML and DL and to summarize recent achievements in their use in the hepatobiliary region.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [21] Australian perspectives on artificial intelligence in medical imaging
    Currie, Geoffrey
    Nelson, Tarni
    Hewis, Johnathan
    Chandler, Amanda
    Spuur, Kelly
    Nabasenja, Caroline
    Thomas, Cate
    Wheat, Janelle
    JOURNAL OF MEDICAL RADIATION SCIENCES, 2022, 69 (03) : 282 - 292
  • [22] The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update
    Ludwig, Maksymilian
    Ludwig, Bartlomiej
    Mikula, Agnieszka
    Biernat, Szymon
    Rudnicki, Jerzy
    Kaliszewski, Krzysztof
    CANCERS, 2023, 15 (03)
  • [23] Artificial Intelligence in Breast Ultrasound: From Diagnosis to Prognosis-A Rapid Review
    Brunetti, Nicole
    Calabrese, Massimo
    Martinoli, Carlo
    Tagliafico, Alberto Stefano
    DIAGNOSTICS, 2023, 13 (01)
  • [24] Artificial Intelligence in Intracoronary Imaging
    Russell Fedewa
    Rishi Puri
    Eitan Fleischman
    Juhwan Lee
    David Prabhu
    David L. Wilson
    D. Geoffrey Vince
    Aaron Fleischman
    Current Cardiology Reports, 2020, 22
  • [25] Artificial Intelligence in Intracoronary Imaging
    Fedewa, Russell
    Puri, Rishi
    Fleischman, Eitan
    Lee, Juhwan
    Prabhu, David
    Wilson, David L.
    Vince, D. Geoffrey
    Fleischman, Aaron
    CURRENT CARDIOLOGY REPORTS, 2020, 22 (07)
  • [26] Artificial Intelligence Pathologist: The use of Artificial Intelligence in Digital Healthcare
    Kaddour, Asmaa Ben Ali
    Abdulaziz, Nidhal
    2021 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2021, : 31 - 36
  • [27] One Step Forward-The Current Role of Artificial Intelligence in Glioblastoma Imaging
    Chirica, Costin
    Haba, Danisia
    Cojocaru, Elena
    Mazga, Andreea Isabela
    Eva, Lucian
    Dobrovat, Bogdan Ionut
    Chirica, Sabina Ioana
    Stirban, Ioana
    Rotundu, Andreea
    Leon, Maria Magdalena
    LIFE-BASEL, 2023, 13 (07):
  • [28] Advancements in Cardiac CT Imaging: The Era of Artificial Intelligence
    Costantini, Pietro
    Groenhoff, Leon
    Ostillio, Eleonora
    Coraducci, Francesca
    Secchi, Francesco
    Carriero, Alessandro
    Colarieti, Anna
    Stecco, Alessandro
    ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2024, 41 (12):
  • [29] Artificial intelligence in multiparametric magnetic resonance imaging: A review
    Li, Cheng
    Li, Wen
    Liu, Chenyang
    Zheng, Hairong
    Cai, Jing
    Wang, Shanshan
    MEDICAL PHYSICS, 2022, 49 (10) : E1024 - E1054
  • [30] Artificial intelligence in cancer imaging: Clinical challenges and applications
    Bi, Wenya Linda
    Hosny, Ahmed
    Schabath, Matthew B.
    Giger, Maryellen L.
    Birkbak, Nicolai J.
    Mehrtash, Alireza
    Allison, Tavis
    Arnaout, Omar
    Abbosh, Christopher
    Dunn, Ian F.
    Mak, Raymond H.
    Tamimi, Rulla M.
    Tempany, Clare M.
    Swanton, Charles
    Hoffmann, Udo
    Schwartz, Lawrence H.
    Gillies, Robert J.
    Huang, Raymond Y.
    Aerts, Hugo J. W. L.
    CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) : 127 - 157