Update on the Use of Artificial Intelligence in Hepatobiliary MR Imaging

被引:7
作者
Nakaura, Takeshi [1 ,2 ]
Kobayashi, Naoki [1 ]
Yoshida, Naofumi [1 ]
Shiraishi, Kaori [1 ]
Uetani, Hiroyuki [1 ]
Nagayama, Yasunori [1 ]
Kidoh, Masafumi [1 ]
Hirai, Toshinori [1 ]
机构
[1] Kumamoto Univ, Grad Sch Med Sci, Dept Diagnost Radiol, Kumamoto, Kumamoto, Japan
[2] Kumamoto Univ Hosp, Radiol, 1-1-1 Honjo,Chuo Ku, Kumamoto, Kumamoto 8608556, Japan
关键词
artificial intelligence; deep learning; machine learning; magnetic resonance imaging; CONVOLUTIONAL NEURAL-NETWORK; RADIOMICS; APPROXIMATE; TUMOR; MODEL;
D O I
10.2463/mrms.rev.2022-0102
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The application of machine learning (ML) and deep learning (DL) in radiology has expanded exponen-tially. In recent years, an extremely large number of studies have reported about the hepatobiliary domain. Its applications range from differential diagnosis to the diagnosis of tumor invasion and prediction of treatment response and prognosis. Moreover, it has been utilized to improve the image quality of DL reconstruction. However, most clinicians are not familiar with ML and DL, and previous studies about these concepts are relatively challenging to understand. In this review article, we aimed to explain the concepts behind ML and DL and to summarize recent achievements in their use in the hepatobiliary region.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 72 条
[41]   Hepatic tumor classification using texture and topology analysis of non-contrast-enhanced three-dimensional T1-weighted MR images with a radiomics approach [J].
Oyama, Asuka ;
Hiraoka, Yasuaki ;
Obayashi, Ippei ;
Saikawa, Yusuke ;
Furui, Shigeru ;
Shiraishi, Kenshiro ;
Kumagai, Shinobu ;
Hayashi, Tatsuya ;
Kotoku, Jun'ichi .
SCIENTIFIC REPORTS, 2019, 9 (1)
[42]   Radiomics Analysis of Gadoxetic Acid-enhanced MRI for Staging Liver Fibrosis [J].
Park, Hyo Jung ;
Lee, Seung Soo ;
Park, Bumwoo ;
Yun, Jessica ;
Sung, Yu Sub ;
Shim, Woo Hyun ;
Shin, Yong Moon ;
Kim, So Yeon ;
Lee, So Jung ;
Lee, Moon-Gyu .
RADIOLOGY, 2019, 290 (02) :380-387
[43]   A Radiomics Model Based on Gd-EOB-DTPA-Enhanced MRI for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma ≤ 5 cm [J].
Qu, Chengming ;
Wang, Qiang ;
Li, Changfeng ;
Xie, Qiao ;
Cai, Ping ;
Yan, Xiaochu ;
Sparrelid, Ernesto ;
Zhang, Leida ;
Ma, Kuansheng ;
Brismar, Torkel B. .
FRONTIERS IN ONCOLOGY, 2022, 12
[44]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[45]   THE PERCEPTRON - A PROBABILISTIC MODEL FOR INFORMATION-STORAGE AND ORGANIZATION IN THE BRAIN [J].
ROSENBLATT, F .
PSYCHOLOGICAL REVIEW, 1958, 65 (06) :386-408
[46]   LEARNING REPRESENTATIONS BY BACK-PROPAGATING ERRORS [J].
RUMELHART, DE ;
HINTON, GE ;
WILLIAMS, RJ .
NATURE, 1986, 323 (6088) :533-536
[47]   Machine learning studies on major brain diseases: 5-year trends of 2014-2018 [J].
Sakai, Koji ;
Yamada, Kei .
JAPANESE JOURNAL OF RADIOLOGY, 2019, 37 (01) :34-72
[48]   Diagnosis of focal liver lesions from ultrasound using deep learning [J].
Schmauch, B. ;
Herent, P. ;
Jehanno, P. ;
Dehaene, O. ;
Saillard, C. ;
Aube, C. ;
Luciani, A. ;
Lassau, N. ;
Jegou, S. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2019, 100 (04) :227-233
[49]  
Sugahara T, 1999, JMRI-J MAGN RESON IM, V9, P53, DOI 10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO
[50]  
2-2