End-to-End Learning for Symbol-Level Precoding and Detection With Adaptive Modulation

被引:4
作者
Liu, Rang [1 ]
Bo, Zhu [1 ]
Li, Ming [1 ]
Liu, Qian [2 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Modulation; Precoding; Neural networks; Symbols; Receivers; Optimization; Feature extraction; Symbol-level precoding; adaptive modulation; end-to-end learning; deep neural network; OF-THE-ART; INTERFERENCE; DOWNLINK;
D O I
10.1109/LWC.2022.3216848
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Conventional symbol-level precoding (SLP) designs assume fixed modulations and detection rules at the receivers for simplifying the transmit precoding optimizations, which greatly limits the flexibility of SLP and the communication quality-of-service (QoS). To overcome the performance bottleneck of these approaches, in this letter we propose an end-to-end learning based approach to jointly optimize the modulation orders, the transmit precoding and the receive detection for an SLP communication system. A neural network composed of the modulation order prediction (MOP-NN) module and the symbol-level precoding and detection (SLPD-NN) module is developed to solve this mathematically intractable problem. Simulations verify the notable performance improvement brought by the proposed end-to-end learning approach.
引用
收藏
页码:50 / 54
页数:5
相关论文
共 12 条
[1]   Symbol-Level and Multicast Precoding for Multiuser Multiantenna Downlink: A State-of-the-Art, Classification, and Challenges [J].
Alodeh, Maha ;
Spano, Danilo ;
Kalantari, Ashkan ;
Tsinos, Christos G. ;
Christopoulos, Dimitrios ;
Chatzinotas, Symeon ;
Ottersten, Bjorn .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2018, 20 (03) :1733-1757
[2]   Deep Learning Based Efficient Symbol-Level Precoding Design for MU-MISO Systems [J].
Bo, Zhu ;
Liu, Rang ;
Li, Ming ;
Liu, Qian .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (08) :8309-8313
[3]  
Dorner S., IEEE J-STSP
[4]   CI-NN: A Model-Driven Deep Learning-Based Constructive Interference Precoding Scheme [J].
Lei, Ziyue ;
Liao, Xuewen ;
Gao, Zhenzhen ;
Li, Ang .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (06) :1896-1900
[5]   A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions [J].
Li, Ang ;
Spano, Danilo ;
Krivochiza, Jevgenij ;
Domouchtsidis, Stavros ;
Tsinos, Christos G. ;
Masouros, Christos ;
Chatzinotas, Symeon ;
Li, Yonghui ;
Vucetic, Branka ;
Ottersten, Bjorn .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (02) :796-839
[6]   Interference Exploitation Precoding Made Practical: Optimal Closed-Form Solutions for PSK Modulations [J].
Li, Ang ;
Masouros, Christos .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (11) :7661-7676
[7]   Exploiting Known Interference as Green Signal Power for Downlink Beamforming Optimization [J].
Masouros, Christos ;
Zheng, Gan .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (14) :3628-3640
[8]   An Unsupervised Learning-Based Approach for Symbol-Level-Precoding [J].
Mohammad, Abdullahi ;
Masouros, Christos ;
Andreopoulos, Yiannis .
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
[9]   An Introduction to Deep Learning for the Physical Layer [J].
O'Shea, Timothy ;
Hoydis, Jakob .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2017, 3 (04) :563-575
[10]  
Sohrabi F, 2020, INT CONF ACOUST SPEE, P8951, DOI [10.1109/icassp40776.2020.9054488, 10.1109/ICASSP40776.2020.9054488]