Impact of the rootstock genotype on the performance of grafted common bean (Phaseolus vulgaris L.) cultivars

被引:6
|
作者
Vougeleka, Vasiliki [1 ]
Savvas, Dimitrios [2 ]
Ntatsi, Georgia [2 ]
Ellinas, Georgios [2 ]
Zacharis, Alexandros [2 ]
Iannetta, Pietro P. M. [3 ]
Mylona, Photini [4 ]
Saitanis, Costas J. [1 ]
机构
[1] Agr Univ Athens, Dept Crop Sci, Lab Ecol & Environm Sci, Athens 11855, Greece
[2] Agr Univ Athens, Dept Crop Sci, Lab Vegetable Prod, Athens 11855, Greece
[3] James Hutton Inst, Ecol Sci, Invergowrie, Dundee DD2 5DA, Scotland
[4] Inst Plant Breeding & Genet Resources, HAO DEMETER, Thermi 57001, Greece
基金
欧盟地平线“2020”;
关键词
BNF; Common bean; Grafting; Legume; Rhizobia; Rootstock; BIOLOGICAL NITROGEN-FIXATION; GREENHOUSE-GAS EMISSIONS; VIGNA-UNGUICULATA L; WATER-STRESS; YIELD; PHOTOSYNTHESIS; VEGETABLES; TOMATO; NODULATION; IMPROVE;
D O I
10.1016/j.scienta.2022.111821
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Grafting is an excellent tool to investigate shoot/root interactions involved in root nodulation by rhizobia and biological nitrogen fixation (BNF) in legumes of high economic and nutritional importance, such as common bean (Phaseolus vulgaris L.). Considering this, three landraces and one commercial cultivar of common bean were grafted onto eight different legume genotypes to identify possible rootstock x scion combinations that increase yield, and to study the impact of the root genotype on nitrogen fixation. The genotypes were three Greek landraces of Phaseolus vulgaris L. (namely 'Chandres Therines', 'Pyrgetos' and 'Tsaoulia'), and one commercial cultivar (cv. 'Helda'). These were grafted onto six different Greek landraces of Phaseolus vulgaris L., particularly 'Chandres', 'Papouda', 'Pastalia', 'Vanilla', 'Zargana Chryssoupolis' and 'Zargana Kavalas', one Phaseolus cocci-neus L. landrace originating from the Greek province Feneos, and one cowpea (Vigna unguiculata (L.) Walp) landrace originating from Arta, Greece. Grafting success was mainly determined by the rootstock genotype. The best rootstock/scion combination, attaining 100% success, was 'Tsaoulia' grafted onto 'Zargana Kavalas'. Moreover, the use of P. coccineus L. as rootstock enhanced appreciably the fresh pod yield by increasing the number of fresh pods. In contrast, cowpea was an incompatible rootstock for grafting P. vulgaris, as all plants grafted on it failed to survive. Most grafting combinations reduced the% of N derived from the atmosphere (% Ndfa) through BNF. Despite the decreased%Ndfa, some rootstocks increased the biologically fixed N per culti-vated area unit due to higher total biomass production, which indicates involvement of mechanisms causing rootstock/scion interactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Effects of seaweed extract on yield and protein content of two common bean (Phaseolus vulgaris L.) cultivars
    Kocira, S.
    Kocira, A.
    Kornas, R.
    Koszel, M.
    Szmigielski, M.
    Krajewska, M.
    Szparaga, A.
    Krzysiak, Z.
    LEGUME RESEARCH, 2018, 41 (04) : 589 - 593
  • [32] Influence of water stress on grain yield and vegetative growth of two cultivars of bean (Phaseolus vulgaris L.)
    Boutraa, T
    Sanders, FE
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2001, 187 (04) : 251 - 257
  • [33] Comparison of common bean (Phaseolus vulgaris L.) genotypes for nitrogen fixation tolerance to soil drying
    Devi, Mura Jyostna
    Sinclair, Thomas R.
    Beebe, Stephen E.
    Rao, Idupulapati M.
    PLANT AND SOIL, 2013, 364 (1-2) : 29 - 37
  • [34] Grain quality of common bean (Phaseolus vulgaris L.) cultivars under low and high nitrogen dose
    Leal, Fabio Tiraboschi
    Trombeta Bettiol, Joao Victor
    Filla, Vinicius Augusto
    Coelho, Anderson Prates
    Checchio Mingotte, Fabio Luiz
    Lemos, Leandro Borges
    REVISTA DE LA FACULTAD DE CIENCIAS AGRARIAS, 2021, 53 (01) : 118 - 127
  • [35] Diseases caused by soil fungi in common bean (Phaseolus vulgaris L.)
    Diaz Castellanos, Manuel
    Quintero, Edilio
    Bernal Cabrera, Alexander
    Reinaldo, Yanet
    CENTRO AGRICOLA, 2005, 32 (03): : 43 - 46
  • [36] Optimization of an indirect regeneration system for common bean (Phaseolus vulgaris L.)
    Xiong, Luxi
    Liu, Chang
    Liu, Dajun
    Yan, Zhishan
    Yang, Xiaoxu
    Feng, Guojun
    PLANT BIOTECHNOLOGY REPORTS, 2023, 17 (06) : 821 - 833
  • [37] Characterization of AT-rich microsatellites in common bean (Phaseolus vulgaris L.)
    Mathew W. Blair
    Hector F. Buendía
    Martha C. Giraldo
    Isabelle Métais
    Didier Peltier
    Theoretical and Applied Genetics, 2008, 118 : 91 - 103
  • [38] The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review
    Abdelaal Shamseldin
    Encarna Velázquez
    World Journal of Microbiology and Biotechnology, 2020, 36
  • [39] Potential of Desmodesmus abundans as biofertilizer in common bean (Phaseolus vulgaris L.)
    Lopes, Graciela Beatris
    Goelzer, Ademir
    Reichel, Tharyn
    de Resende, Mario Lucio Vilela
    Duarte, Whasley Ferreira
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2023, 49
  • [40] Characterisation of the complete chloroplast genome of the common bean, Phaseolus vulgaris L.
    Meng, Xianxin
    Li, Ming
    MITOCHONDRIAL DNA PART B-RESOURCES, 2018, 3 (02): : 920 - 922