Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting

被引:17
作者
Fiscella, Alessio [1 ]
Marino, Greta [2 ]
Pinamonti, Andrea [3 ]
Verzellesi, Simone [3 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Via Cozzi 55, I-20125 Milan, Italy
[2] Univ Augsburg, Inst Math, Univ Str 12a, D-86159 Augsburg, Germany
[3] Univ Trento, Dipartimento Matemat, Via Sommar 14, I-38123 Povo, Trento, Italy
来源
REVISTA MATEMATICA COMPLUTENSE | 2024年 / 37卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Kirchhoff coefficients; Double phase problems; Nonlinear boundary conditions; Variational methods; EXISTENCE; REGULARITY; EIGENVALUES; MINIMIZERS; CALCULUS;
D O I
10.1007/s13163-022-00453-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with some classes of Kirchhoff type problems on a double phase setting and with nonlinear boundary conditions. Under general assumptions, we provide multiplicity results for such problems in the case when the perturbations exhibit a suitable behavior in the origin and at infinity, or when they do not necessarily satisfy the Ambrosetti-Rabinowitz condition. To this aim, we combine variational methods, truncation arguments and topological tools.
引用
收藏
页码:205 / 236
页数:32
相关论文
共 31 条
[1]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[2]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[3]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[4]  
Brezis H, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-387-70914-7_1
[5]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[6]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273
[7]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496
[8]   A new class of double phase variable exponent problems: Existence and uniqueness [J].
Crespo-Blanco, Angel ;
Gasinski, Leszek ;
Harjulehto, Petteri ;
Winkert, Patrick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 323 :182-228
[9]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[10]   Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian [J].
El Manouni, Said ;
Marino, Greta ;
Winkert, Patrick .
ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) :304-320