Design and modeling of a quasi-zero stiffness isolator for different loads

被引:30
|
作者
Zheng, Yawei [1 ]
Shangguan, Wen-Bin [1 ]
Yin, Zhihong [1 ]
Liu, Xiao-Ang [2 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou, Peoples R China
[2] Hebei Univ Technol, Sch Mech Engn, Tianjin Key Lab Power Transmiss & Safety Technol N, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple quasi-zero stiffness; Low frequency; Vibration isolation; Piecewise nonlinear; Dynamic stiffness modeling; VIBRATION ISOLATOR; TRANSMISSIBILITY; PERFORMANCE;
D O I
10.1016/j.ymssp.2022.110017
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Most quasi-zero stiffness (QZS) isolators are effective to achieve low-frequency vibration isolation for a certain load but are not capable of achieving effective isolation for other loads. In this paper, an isolator composed of n series-arranged elements is proposed to explore the mechanism of acquiring multiple QZS characteristics. Each element of the proposed isolator exhibits a single QZS characteristic under various specific loads, and thus the proposed isolator shows multiple QZS characteristics under different loads. Then, QZS elements are fabricated using Thermoplastic polyurethanes (TPU). Reacted forces of the proposed isolator under static and harmonic excita-tions are measured. The measurements show that static behavior of the proposed isolator has multiple QZS characteristics, while dynamic behaviors exhibit preload-, amplitude-and frequency-dependent properties. To explore the proposed isolator's properties, three kinds of equivalent mechanical models are proposed. Finally, a single degree of freedom system (DOF) with the proposed isolator is established to investigate its isolation performances theoretically and experimentally. It is found that with the increased layer number, the proposed isolator is effective for achieving low-frequency vibration isolation under various preloads, and this advantage can be enhanced if the damping and excitation are small.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Design and Vibration Isolation Investigation of a Load-Adjustable Quasi-Zero Stiffness Isolator
    Zhu, Jun
    Wang, Chenyu
    Chen, Keyan
    Shi, Huanghao
    Wang, Zhengzheng
    Wu, Bin
    Wu, Helong
    Zhang, Han
    Wu, Huaping
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024,
  • [32] Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping
    Liu, Yanqi
    Xu, Longlong
    Song, Chunfang
    Gu, Huangsen
    Ji, Wen
    ARCHIVE OF APPLIED MECHANICS, 2019, 89 (09) : 1743 - 1759
  • [33] Tunable stiffness design of curved-crease origami and extended quasi-zero stiffness vibration isolator
    Zhou, Ya
    Tachi, Tomohiro
    Cai, Jianguo
    Feng, Jian
    SMART MATERIALS AND STRUCTURES, 2024, 33 (02)
  • [34] Influence of excitation amplitude and load on the characteristics of quasi-zero stiffness isolator
    Liu, Xingtian
    Huang, Xiuchang
    Zhang, Zhiyi
    Hua, Hongxing
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2013, 49 (06): : 89 - 94
  • [35] A tunable quasi-zero stiffness isolator based on a linear electromagnetic spring
    Yuan, Shujin
    Sun, Yi
    Zhao, Jinglei
    Meng, Kai
    Wang, Min
    Pu, Huayan
    Peng, Yan
    Luo, Jun
    Xie, Shaorong
    JOURNAL OF SOUND AND VIBRATION, 2020, 482
  • [36] An innovative quasi-zero stiffness isolator with three pairs of oblique springs
    Zhao, Feng
    Ji, Jinchen
    Ye, Kan
    Luo, Quantian
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 192
  • [37] EXPERIMENTAL STUDY OF LOW FREQUENCY VIBRATION ISOLATOR WITH QUASI-ZERO STIFFNESS
    Anvar, Valeev
    Radmir, Tashbulatov
    Alexey, Zotov
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONGRESS ON SOUND AND VIBRATION: FROM ANCIENT TO MODERN ACOUSTICS, 2016,
  • [38] Nonlinear behavior of quasi-zero stiffness nonlinear torsional vibration isolator
    Xu, Jiawei
    Jing, Jianping
    NONLINEAR DYNAMICS, 2024, 112 (04) : 2545 - 2568
  • [39] Quasi-Zero Stiffness Isolator Suitable for Low-Frequency Vibration
    Sui, Guangdong
    Zhang, Xiaofan
    Hou, Shuai
    Shan, Xiaobiao
    Hou, Weijie
    Li, Jianming
    MACHINES, 2023, 11 (05)
  • [40] Limb-inspired bionic quasi-zero stiffness vibration isolator
    Zeng, Rong
    Wen, Guilin
    Zhou, Jiaxi
    Zhao, Gang
    ACTA MECHANICA SINICA, 2021, 37 (07) : 1152 - 1167