Robust Interlayer-Coherent Quantum Hall States in Twisted Bilayer Graphene

被引:9
|
作者
Kim, Dohun [1 ]
Kang, Byungmin [2 ,3 ]
Choi, Yong-Bin [4 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [6 ]
Lee, Gil-Ho [4 ,7 ]
Cho, Gil Young [4 ,7 ,8 ]
Kim, Youngwook [1 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Phys & Chem, Daegu 42988, South Korea
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Korea Inst Adv Study, Sch Phys, Seoul 02455, South Korea
[4] Pohang Univ Sci & Technol POSTECH, Dept Phys, Pohang 37673, South Korea
[5] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Ibaraki 3050044, Japan
[6] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[7] Asia Pacific Ctr Theoret Phys, Pohang 37673, South Korea
[8] Inst Basic Sci IBS, Ctr Artificial Low Dimens Elect Syst, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Twisted Bilayer Graphene; Large Twist Angle; Bose-Einstein Condensation; Exciton Condensation; Quantum Hall Effect; Interlayer-Coherence; FRACTIONAL CHERN INSULATORS; CORRELATED STATES; TRANSITION; SPIN; FERROMAGNETISM; REALIZATION; PHASE;
D O I
10.1021/acs.nanolett.2c03836
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a novel two-dimensional electronic system with ultrastrong interlayer interactions, namely, twisted bilayer graphene with a large twist angle, as an ideal ground for realizing interlayer-coherent excitonic condensates. In these systems, sub-nanometer atomic separation between the layers allows significant interlayer interactions, while interlayer electron tunneling is geometrically suppressed due to the large twist angle. By fully exploiting these two features we demonstrate that a sequence of odd-integer quantum Hall states with interlayer coherence appears at the second Landau level (N = 1). Notably the energy gaps for these states are of order 1 K, which is several orders of magnitude greater than those in GaAs. Furthermore, a variety of quantum Hall phase transitions are observed experimentally. All the experimental observations are largely consistent with our phenomenological model calculations. Hence, we establish that a large twist angle system is an excellent platform for high-temperature excitonic condensation.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 50 条
  • [21] Theories for the correlated insulating states and quantum anomalous Hall effect phenomena in twisted bilayer graphene
    Liu, Jianpeng
    Dai, Xi
    PHYSICAL REVIEW B, 2021, 103 (03)
  • [22] Interlayer coherence in ν=1 and ν=2 bilayer quantum Hall states
    Sawada, A
    Ezawa, ZF
    Ohno, H
    Horikoshi, Y
    Urayama, A
    Ohno, Y
    Kishimoto, S
    Matsukura, F
    Kumada, N
    PHYSICAL REVIEW B, 1999, 59 (23): : 14888 - 14891
  • [23] Periodic Landau gauge and quantum Hall effect in twisted bilayer graphene
    Hasegawa, Yasumasa
    Kohmoto, Mahito
    PHYSICAL REVIEW B, 2013, 88 (12):
  • [24] Quantum Hall Interferometry in Triangular Domains of Marginally Twisted Bilayer Graphene
    Mahapatra, Phanibhusan S.
    Garg, Manjari
    Ghawri, Bhaskar
    Jayaraman, Aditya
    Watanabe, Kenji
    Taniguchi, Takashi
    Ghosh, Arindam
    Chandni, U.
    NANO LETTERS, 2022, 22 (14) : 5708 - 5714
  • [25] Collective Excitations of Quantum Anomalous Hall Ferromagnets in Twisted Bilayer Graphene
    Wu, Fengcheng
    Das Sarma, Sankar
    PHYSICAL REVIEW LETTERS, 2020, 124 (04)
  • [26] Hofstadter butterfly and the quantum Hall effect in twisted double bilayer graphene
    Crosse, J. A.
    Nakatsuji, Naoto
    Koshino, Mikito
    Moon, Pilkyung
    PHYSICAL REVIEW B, 2020, 102 (03)
  • [27] Quantum Hall States and Phase Diagram of Bilayer Graphene
    Jia, Junji
    QUEST FOR THE ORIGIN OF PARTICLES IN THE UNIVERSE, 2013, : 323 - 326
  • [28] Edge states of bilayer graphene in the quantum Hall regime
    Mazo, V.
    Shimshoni, E.
    Fertig, H. A.
    PHYSICAL REVIEW B, 2011, 84 (04)
  • [29] Distinguishing Spontaneous Quantum Hall States in Bilayer Graphene
    Zhang, Fan
    MacDonald, A. H.
    PHYSICAL REVIEW LETTERS, 2012, 108 (18)
  • [30] Breakdown of the Interlayer Coherence in Twisted Bilayer Graphene
    Kim, Youngwook
    Yun, Hoyeol
    Nam, Seung-Geol
    Son, Minhyeok
    Lee, Dong Su
    Kim, Dong Chul
    Seo, S.
    Choi, Hee Cheul
    Lee, Hu-Jong
    Lee, Sang Wook
    Kim, Jun Sung
    PHYSICAL REVIEW LETTERS, 2013, 110 (09)