Robust Interlayer-Coherent Quantum Hall States in Twisted Bilayer Graphene

被引:9
|
作者
Kim, Dohun [1 ]
Kang, Byungmin [2 ,3 ]
Choi, Yong-Bin [4 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [6 ]
Lee, Gil-Ho [4 ,7 ]
Cho, Gil Young [4 ,7 ,8 ]
Kim, Youngwook [1 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Phys & Chem, Daegu 42988, South Korea
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Korea Inst Adv Study, Sch Phys, Seoul 02455, South Korea
[4] Pohang Univ Sci & Technol POSTECH, Dept Phys, Pohang 37673, South Korea
[5] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Ibaraki 3050044, Japan
[6] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[7] Asia Pacific Ctr Theoret Phys, Pohang 37673, South Korea
[8] Inst Basic Sci IBS, Ctr Artificial Low Dimens Elect Syst, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Twisted Bilayer Graphene; Large Twist Angle; Bose-Einstein Condensation; Exciton Condensation; Quantum Hall Effect; Interlayer-Coherence; FRACTIONAL CHERN INSULATORS; CORRELATED STATES; TRANSITION; SPIN; FERROMAGNETISM; REALIZATION; PHASE;
D O I
10.1021/acs.nanolett.2c03836
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a novel two-dimensional electronic system with ultrastrong interlayer interactions, namely, twisted bilayer graphene with a large twist angle, as an ideal ground for realizing interlayer-coherent excitonic condensates. In these systems, sub-nanometer atomic separation between the layers allows significant interlayer interactions, while interlayer electron tunneling is geometrically suppressed due to the large twist angle. By fully exploiting these two features we demonstrate that a sequence of odd-integer quantum Hall states with interlayer coherence appears at the second Landau level (N = 1). Notably the energy gaps for these states are of order 1 K, which is several orders of magnitude greater than those in GaAs. Furthermore, a variety of quantum Hall phase transitions are observed experimentally. All the experimental observations are largely consistent with our phenomenological model calculations. Hence, we establish that a large twist angle system is an excellent platform for high-temperature excitonic condensation.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 50 条
  • [1] Odd Integer Quantum Hall States with Interlayer Coherence in Twisted Bilayer Graphene
    Kim, Youngwook
    Moon, Pilkyung
    Watanabe, Kenji
    Taniguchi, Takashi
    Smet, Jurgen H.
    NANO LETTERS, 2021, 21 (10) : 4249 - 4254
  • [2] Quantum anomalous Hall effect in twisted bilayer graphene
    Wang, Wen-Xiao
    Liu, Yi-Wen
    He, Lin
    CHINESE PHYSICS B, 2025, 34 (04)
  • [3] Broken-Symmetry Quantum Hall States in Twisted Bilayer Graphene
    Kim, Youngwook
    Park, Jaesung
    Song, Intek
    Ok, Jong Mok
    Jo, Younjung
    Watanabe, Kenji
    Taniquchi, Takashi
    Choi, Hee Cheul
    Lee, Dong Su
    Jung, Suyong
    Kim, Jun Sung
    SCIENTIFIC REPORTS, 2016, 6
  • [4] Quantum spin Hall effect in twisted bilayer graphene
    Finocchiaro, F.
    Guinea, F.
    San-Jose, P.
    2D MATERIALS, 2017, 4 (02):
  • [5] Interlayer coherent phenomena in bilayer quantum Hall systems
    Ezawa, ZF
    Sawada, A
    PHYSICA B-CONDENSED MATTER, 2001, 294 : 463 - 466
  • [6] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal*
    Li, Zedong
    Wang, Z. F.
    CHINESE PHYSICS B, 2020, 29 (10)
  • [7] Probing quantum coherent states in bilayer graphene
    Gilbert, M. J.
    Shumway, J.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2009, 8 (02) : 51 - 59
  • [8] Coherent states in the bilayer fractional quantum Hall ferromagnet
    Nakajima, T
    Aoki, H
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 828 - 831
  • [9] Periodic Landau gauge and quantum Hall effect in twisted bilayer graphene
    Hasegawa, Yasumasa
    Kohmoto, Mahito
    PHYSICAL REVIEW B, 2013, 88 (12):
  • [10] Quantum Hall Interferometry in Triangular Domains of Marginally Twisted Bilayer Graphene
    Mahapatra, Phanibhusan S.
    Garg, Manjari
    Ghawri, Bhaskar
    Jayaraman, Aditya
    Watanabe, Kenji
    Taniguchi, Takashi
    Ghosh, Arindam
    Chandni, U.
    NANO LETTERS, 2022, 22 (14) : 5708 - 5714