Scalable algorithm simplification using quantum AND logic

被引:36
作者
Chu, Ji [1 ,2 ,3 ]
He, Xiaoyu [4 ,5 ]
Zhou, Yuxuan [1 ,2 ,3 ,6 ]
Yuan, Jiahao [1 ,2 ,3 ,6 ]
Zhang, Libo [1 ,2 ,3 ]
Guo, Qihao [1 ,2 ,3 ]
Hai, Yongju [1 ,2 ,3 ]
Han, Zhikun [1 ,2 ,3 ]
Hu, Chang-Kang [1 ,2 ,3 ]
Huang, Wenhui [1 ,2 ,3 ,6 ]
Jia, Hao [1 ,2 ,3 ]
Jiao, Dawei [1 ,2 ,3 ]
Li, Sai [1 ,2 ,3 ]
Liu, Yang [1 ,2 ,3 ]
Ni, Zhongchu [1 ,2 ,3 ,6 ]
Nie, Lifu [1 ,2 ,3 ]
Pan, Xianchuang [1 ,2 ,3 ]
Qiu, Jiawei [1 ,2 ,3 ,6 ]
Wei, Weiwei [1 ,2 ,3 ]
Nuerbolati, Wuerkaixi [1 ,2 ,3 ]
Yang, Zusheng [1 ,2 ,3 ]
Zhang, Jiajian [1 ,2 ,3 ,6 ]
Zhang, Zhida [1 ,2 ,3 ,6 ]
Zou, Wanjing [1 ,2 ,3 ]
Chen, Yuanzhen [1 ,2 ,3 ,6 ]
Deng, Xiaowei [1 ,2 ,3 ]
Deng, Xiuhao [1 ,2 ,3 ]
Hu, Ling [1 ,2 ,3 ]
Li, Jian [1 ,2 ,3 ]
Liu, Song [1 ,2 ,3 ]
Lu, Yao [1 ,2 ,3 ]
Niu, Jingjing [1 ,2 ,3 ]
Tan, Dian [1 ,2 ,3 ]
Xu, Yuan [1 ,2 ,3 ]
Yan, Tongxing [1 ,2 ,3 ]
Zhong, Youpeng [1 ,2 ,3 ]
Yan, Fei [1 ,2 ,3 ]
Sun, Xiaoming [4 ,7 ]
Yu, Dapeng [1 ,2 ,3 ,6 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen, Guangdong, Peoples R China
[2] Int Quantum Acad, Shenzhen, Guangdong, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen, Guangdong, Peoples R China
[4] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[5] Univ Chinese Acad Sci, Beijing, Peoples R China
[6] Southern Univ Sci & Technol, Dept Phys, Shenzhen, Peoples R China
[7] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer circuits - Quantum theory;
D O I
10.1038/s41567-022-01813-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Implementing quantum algorithms on realistic devices requires translating high-level global operations into sequences of hardware-native logic gates, a process known as quantum compiling. Physical limitations, such as constraints in connectivity and gate alphabets, often result in unacceptable implementation costs. To enable successful near-term applications, it is crucial to optimize compilation by exploiting the capabilities of existing hardware. Here we implement a resource-efficient construction for a quantum version of AND logic that can reduce the compilation overhead, enabling the execution of key quantum circuits. On a high-scalability superconducting quantum processor, we demonstrate low-depth synthesis of high-fidelity generalized Toffoli gates with up to 8 qubits and Grover's search algorithm in a search space of up to 64 entries. Our experimental demonstration illustrates a scalable and widely applicable approach to implementing quantum algorithms, bringing more meaningful quantum applications on noisy devices within reach. To run algorithms on a computer they are broken down into logical operations that are implemented in hardware. A quantum logical AND gate has now been demonstrated, which could substantially improve the efficiency of near-term quantum computers.
引用
收藏
页码:126 / +
页数:7
相关论文
共 48 条
[1]   Implementation of XY entangling gates with a single calibrated pulse [J].
Abrams, Deanna M. ;
Didier, Nicolas ;
Johnson, Blake R. ;
da Silva, Marcus P. ;
Ryan, Colm A. .
NATURE ELECTRONICS, 2020, 3 (12) :744-+
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[4]   Impact of Spectators on a Two-Qubit Gate in a Tunable Coupling Superconducting Circuit [J].
Cai, T-Q ;
Han, X-Y ;
Wu, Y-K ;
Ma, Y-L ;
Wang, J-H ;
Wang, Z-L ;
Zhang, H-Y ;
Wang, H-Y ;
Song, Y-P ;
Duan, L-M .
PHYSICAL REVIEW LETTERS, 2021, 127 (06)
[5]   Toward the first quantum simulation with quantum speedup [J].
Childs, Andrew M. ;
Maslov, Dmitri ;
Nam, Yunseong ;
Ross, Neil J. ;
Su, Yuan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (38) :9456-9461
[6]   Programming languages and compiler design for realistic quantum hardware [J].
Chong, Frederic T. ;
Franklin, Diana ;
Martonosi, Margaret .
NATURE, 2017, 549 (7671) :180-187
[7]   Coupler-Assisted Controlled-Phase Gate with Enhanced Adiabaticity [J].
Chu, Ji ;
Yan, Fei .
PHYSICAL REVIEW APPLIED, 2021, 16 (05)
[8]   Implementation of Conditional Phase Gates Based on Tunable ZZ Interactions [J].
Collodo, Michele C. ;
Herrmann, Johannes ;
Lacroix, Nathan ;
Andersen, Christian Kraglund ;
Remm, Ants ;
Lazar, Stefania ;
Besse, Jean-Claude ;
Walter, Theo ;
Wallraff, Andreas ;
Eichler, Christopher .
PHYSICAL REVIEW LETTERS, 2020, 125 (24)
[9]   Experimental quantum error correction [J].
Cory, DG ;
Price, MD ;
Maas, W ;
Knill, E ;
Laflamme, R ;
Zurek, WH ;
Havel, TF ;
Somaroo, SS .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2152-2155
[10]   Toward fault-tolerant quantum computation without concatenation [J].
Dennis, E .
PHYSICAL REVIEW A, 2001, 63 (05) :6