A self-adhesive, self-healing zwitterionic hydrogel electrolyte for high-voltage zinc-ion hybrid supercapacitors

被引:45
|
作者
Zhang, Zhixin [1 ]
Gao, Yang [1 ]
Gao, Yiyan [1 ]
Jia, Fei [1 ]
Gao, Guanghui [1 ]
机构
[1] Changchun Univ Technol, Adv Inst Mat Sci, Sch Chem Engn, Polymer & Soft Mat Lab, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Zwitterionic hydrogel electrolytes; Zinc -ion hybrid supercapacitor; Self -healing properties; Wide operating voltage; High energy density;
D O I
10.1016/j.cej.2022.139014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the widespread application of portable electronic devices, high-performance supercapacitors have attracted enormous interest. Nevertheless, the previously reported supercapacitors typically suffer from a few disadvan-tages, such as the low energy density, irreversible breakage and poor interface combination between electrolyte and electrodes, restricting the development of high-performance supercapacitors. Herein, the betaine-based zwitterionic hydrogel electrolyte with excellent self-healing properties, anti-drying ability and mechanical flexibility was prepared for zinc-ion hybrid supercapacitor (ZIHS). Betaine enhanced the adhesion of zwitterionic hydrogel electrolytes, which promoted the interface bonding between electrolyte and electrode. Impressively, the ZIHS based on zwitterionic hydrogel electrolytes exhibited a wide electrochemical stability window of 2.2 V and a high energy density of 237.34 mAh/g. In addition, the ZIHS based on zwitterionic hydrogels possessed great self-healing ability, the self-healing efficiency achieved 88.3 % of the initial state after five cutting-healing cycles. This research will supply an effective strategy for the design of hydrogel-based supercapacitors with wide voltage windows, high energy density and reusability.
引用
收藏
页数:8
相关论文
共 40 条
  • [1] Self-adhesive, freeze-tolerant, and strong hydrogel electrolyte containing xanthan gum enables the high-performance of zinc-ion hybrid supercapacitors
    Zhou, Yiyang
    Liu, Hailang
    Zhou, Xuan
    Lin, Xiangyu
    Cai, Yinfeng
    Shen, Minggui
    Huang, Xujuan
    Liu, He
    Xu, Xu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 265
  • [2] A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor
    Han, Lu
    Huang, Hailong
    Fu, Xiaobin
    Li, Junfeng
    Yang, Zhongli
    Liu, Xinjuan
    Pan, Likun
    Xu, Min
    CHEMICAL ENGINEERING JOURNAL, 2020, 392
  • [3] Kinetics-Boosted Effect Enabled by Zwitterionic Hydrogel Electrolyte for Highly Reversible Zinc Anode in Zinc-Ion Hybrid Micro-Supercapacitors
    Zhang, Wentao
    Guo, Fengjiao
    Mi, Hongyu
    Wu, Zhong-Shuai
    Ji, Chenchen
    Yang, Congcong
    Qiu, Jieshan
    ADVANCED ENERGY MATERIALS, 2022, 12 (40)
  • [4] A physically cross-linked carboxymethyl cellulose/chitosan hydrogel electrolyte with high ionic conductivity for zinc-ion hybrid supercapacitors
    Yang, Yujia
    Ni, Siyang
    Zhu, Jingqiao
    Xiao, Qiang
    Song, Xianliang
    Jin, Xiaojuan
    JOURNAL OF ENERGY STORAGE, 2025, 115
  • [5] A supramolecular gel polymer electrolyte for ultralong-life zinc-ion hybrid supercapacitors
    Yang, He
    Zhang, Jijian
    Yao, Jiale
    Zuo, Danying
    Xu, Jing
    Zhang, Hongwei
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [6] High load, long cycle and flexible zinc-ion hybrid supercapacitors
    Zhang, Zhiwei
    Liu, Yaodong
    Wang, Liying
    Li, Xuesong
    Lu, Wei
    Yang, Xijia
    JOURNAL OF ENERGY STORAGE, 2024, 79
  • [7] MXene/Zwitterionic Hydrogel Oriented Anti-freezing and High-Performance Zinc-Ion Hybrid Supercapacitor
    Li, Ruonan
    Jia, Wenhan
    Wen, Jianfeng
    Hu, Guanghui
    Tang, Tao
    Li, Xinyu
    Jiang, Li
    Li, Ming
    Huang, Haifu
    Fang, Guozhao
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (49)
  • [8] Rationally designed anode and gel polymer electrolyte for high-performance zinc-ion hybrid supercapacitors
    Zhang, Jijian
    Wang, Jingjing
    Zuo, Danying
    Xu, Jing
    Li, Hongjun
    Zhang, Hongwei
    JOURNAL OF POWER SOURCES, 2023, 581
  • [9] Electrolyte Additive-Assembled Interconnecting Molecules–Zinc Anode Interface for Zinc-Ion Hybrid Supercapacitors
    Yang Li
    Xu Li
    Xinya Peng
    Xinyu Yang
    Feiyu Kang
    Liubing Dong
    Nano-Micro Letters, 2025, 17 (1)
  • [10] Waste frying oil derived carbon nano-onions as a cost-effective cathode material for high-voltage zinc-ion hybrid supercapacitors
    Das, Gouri Sankar
    Panigrahi, Rajarshi
    Ghosh, Somnath
    Tripathi, Kumud Malika
    MATERIALS TODAY SUSTAINABILITY, 2024, 25