RADIUS, LEAF NUMBER, CONNECTED DOMINATION NUMBER AND MINIMUM DEGREE

被引:3
作者
Mafuta, P. [1 ]
Mukwembi, S. [2 ]
Munyira, S. [3 ]
机构
[1] Univ Free State, Dept Math & Appl Math IB74, POB 339, ZA-9300 Bloemfontein, South Africa
[2] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[3] Univ Zimbabwe, Dept Math & Computat Sci, Harare, Zimbabwe
关键词
Leaf number; minimum degree; radius; SPANNING-TREES; AVERAGE DISTANCE; GRAPHS; DIAMETER; BOUNDS; LEAVES; SIZE;
D O I
10.2989/16073606.2022.2050958
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple, connected graph with minimum degree delta, radius r and leaf number L(G). We prove that L(G)>={2/3 (r - 1/2) (delta - 2) + 2 if r equivalent to 2 modulo 3, 2/3 r(delta - 2) + 2 if r equivalent to 0 modulo 3, 2/3 (r - 1) (delta - 2) + 2 otherwise: We give similar bounds for triangle-free graphs. Infinite families of graphs are constructed to show that all the bounds here are sharp, except the one for r equivalent to 1 modulo 3 in the above piecewise inequality. The results bring to literature new lower bounds on the leaf number and new upper bounds on the radius and connected domination number of a graph. Further, the techniques applied in this paper can be used to improve known asymptotically sharp bounds on the radius and diameter to sharp bounds. We consider simple graphs only.
引用
收藏
页码:1009 / 1016
页数:8
相关论文
共 35 条
[1]   TRANSVERSAL NUMBERS OF UNIFORM HYPERGRAPHS [J].
ALON, N .
GRAPHS AND COMBINATORICS, 1990, 6 (01) :1-4
[2]   Spanning trees with many leaves in graphs with minimum degree three [J].
Bonsma, Paul S. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (03) :920-937
[3]   Connected domination and spanning trees with many leaves [J].
Caro, Y ;
West, DB ;
Yuster, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (02) :202-211
[4]   THE AVERAGE DISTANCE AND THE INDEPENDENCE NUMBER [J].
CHUNG, FRK .
JOURNAL OF GRAPH THEORY, 1988, 12 (02) :229-235
[5]  
Dankelmann P, 2005, UTILITAS MATHEMATICA, V67, P205
[6]  
Dankelmann P, 2000, J GRAPH THEOR, V33, P1, DOI 10.1002/(SICI)1097-0118(200001)33:1<1::AID-JGT1>3.0.CO
[7]  
2-L
[8]  
Dankelmann P., 2012, DISTANCE MOL GRAPHS, P2
[9]   Diameter and inverse degree [J].
Dankelmann, Peter ;
Swart, Henda C. ;
van den Berg, Paul .
DISCRETE MATHEMATICS, 2008, 308 (5-6) :670-673
[10]   Spanning trees with many leaves [J].
Ding, GL ;
Johnson, T ;
Seymour, P .
JOURNAL OF GRAPH THEORY, 2001, 37 (04) :189-197