Why neural functionals suit statistical mechanics

被引:8
|
作者
Sammueller, Florian [1 ]
Hermann, Sophie [1 ]
Schmidt, Matthias [1 ]
机构
[1] Univ Bayreuth, Phys Inst, Theoret Phys 2, D-95447 Bayreuth, Germany
关键词
density functional theory; statistical mechanics; machine learning; inhomogeneous fluids; fundamental measure theory; neural functional theory; differential programming; HARD-SPHERE FLUID; EQUATION-OF-STATE; INHOMOGENEOUS FLUIDS; ELECTRONIC-STRUCTURE; CLASSICAL FLUID; DENSITY; NONUNIFORM; LIQUIDS; EFFICIENT;
D O I
10.1088/1361-648X/ad326f
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We describe recent progress in the statistical mechanical description of many-body systems via machine learning combined with concepts from density functional theory and many-body simulations. We argue that the neural functional theory by Sammuller et al (2023 Proc. Natl Acad. Sci. 120 e2312484120) gives a functional representation of direct correlations and of thermodynamics that allows for thorough quality control and consistency checking of the involved methods of artificial intelligence. Addressing a prototypical system we here present a pedagogical application to hard core particle in one spatial dimension, where Percus' exact solution for the free energy functional provides an unambiguous reference. A corresponding standalone numerical tutorial that demonstrates the neural functional concepts together with the underlying fundamentals of Monte Carlo simulations, classical density functional theory, machine learning, and differential programming is available online at https://github.com/sfalmo/NeuralDFT-Tutorial.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Boosted Statistical Mechanics
    Testa, Massimo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (08) : 2718 - 2723
  • [12] Statistical Mechanics of Electrowetting
    Louge, Michel Y.
    Wang, Yujie
    ENTROPY, 2024, 26 (04)
  • [13] Statistical mechanics of choice
    Faynzilberg, PS
    MAXIMUM ENTROPY AND BAYESIAN METHODS, 1996, 79 : 329 - 334
  • [14] The statistical mechanics of membranes
    Bowick, MJ
    Travesset, A
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 344 (4-6): : 255 - 308
  • [15] Statistical mechanics of glass
    Mauro, John C.
    Smedskjaer, Morten M.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2014, 396 : 41 - 53
  • [16] Perspectives in statistical mechanics
    Aizenman, Michael
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS: A FESTSCHRIFT IN HONOR OF BARRY SIMON'S 60TH BIRTHDAY: QUANTUM FIELD THEORY, STATISTICAL MECHANICS, AND NONRELATIVISTIC QUANTUM SYSTEMS, 2007, 76 : 3 - 24
  • [17] The statistical mechanics of earthquakes
    Rundle, JB
    Gross, S
    Klein, W
    Ferguson, C
    Turcotte, DL
    TECTONOPHYSICS, 1997, 277 (1-3) : 147 - 164
  • [18] Statistical mechanics of the neocortex
    Buice, Michael A.
    Cowan, Jack D.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2009, 99 (2-3) : 53 - 86
  • [19] An introduction to statistical mechanics
    Francl, MM
    JOURNAL OF CHEMICAL EDUCATION, 2005, 82 (01) : 175 - 175
  • [20] Statistical Mechanics Methods for Discovering Knowledge from Modern Production Quality Neural Networks
    Martin, Charles H.
    Mahoney, Michael W.
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 3239 - 3240