Predicting pathological complete response to neoadjuvant chemotherapy in breast cancer patients: use of MRI radiomics data from three regions with multiple machine learning algorithms

被引:9
作者
Zheng, Guangying [1 ,2 ]
Peng, Jiaxuan [1 ]
Shu, Zhenyu [1 ]
Jin, Hui [1 ]
Han, Lu [1 ]
Yuan, Zhongyu [1 ]
Qin, Xue [1 ]
Hou, Jie [1 ]
He, Xiaodong [1 ]
Gong, Xiangyang [1 ]
机构
[1] Hangzhou Med Coll, Zhejiang Prov Peoples Hosp, Affiliated Peoples Hosp, Canc Ctr,Dept Radiol, 158 Shangtang Rd, Hangzhou, Zhejiang, Peoples R China
[2] Jinzhou Med Univ, Jinzhou, Liaoning, Peoples R China
关键词
Breast cancer; Radiomics; Neoadjuvant chemotherapy; Pathological complete response; Background parenchymal enhancement; Machine learning; BACKGROUND PARENCHYMAL ENHANCEMENT; ASSOCIATION;
D O I
10.1007/s00432-024-05680-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective To construct a multi-region MRI radiomics model for predicting pathological complete response (pCR) in breast cancer (BCa) patients who received neoadjuvant chemotherapy (NACT) and provide a theoretical basis for the peritumoral microenvironment affecting the efficacy of NACT.Methods A total of 133 BCa patients who received NACT, including 49 with confirmed pCR, were retrospectively analyzed. The radiomics features of the intratumoral region, peritumoral region, and background parenchymal enhancement (BPE) were extracted, and the most relevant features were obtained after dimensional reduction. Then, combining different areas, multivariate logistic regression analysis was used to select the optimal feature set, and six different machine learning models were used to predict pCR. The optimal model was selected, and its performance was evaluated using receiver operating characteristic (ROC) analysis. SHAP analysis was used to examine the relationship between the features of the model and pCR.Results For signatures constructed using three individual regions, BPE provided the best predictions of pCR, and the diagnostic performance of the intratumoral and peritumoral regions improved after adding the BPE signature. The radiomics signature from the combination of all the three regions with the XGBoost machine learning algorithm provided the best predictions of pCR based on AUC (training set: 0.891, validation set: 0.861), sensitivity (training set: 0.882, validation set: 0.800), and specificity (training set: 0.847, validation set: 0.84). SHAP analysis demonstrated that LZ_log.sigma.2.0.mm.3D_glcm_ClusterShade_T12 made the greatest contribution to the predictions of this model.Conclusion The addition of the BPE MRI signature improved the prediction of pCR in BCa patients who received NACT. These results suggest that the features of the peritumoral microenvironment are related to the efficacy of NACT.
引用
收藏
页数:13
相关论文
共 34 条
[1]   Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials [J].
Alberro, J. A. ;
Ballester, B. ;
Deulofeu, P. ;
Fabregas, R. ;
Fraile, M. ;
Gubern, J. M. ;
Janer, J. ;
Moral, A. ;
de Pablo, J. L. ;
Penalva, G. ;
Puig, P. ;
Ramos, M. ;
Rojo, R. ;
Santesteban, P. ;
Serra, C. ;
Sola, M. ;
Solarnau, L. ;
Solsona, J. ;
Veloso, E. ;
Vidal, S. ;
Abe, O. ;
Abe, R. ;
Enomoto, K. ;
Kikuchi, K. ;
Koyama, H. ;
Masuda, H. ;
Nomura, Y. ;
Ohashi, Y. ;
Sakai, K. ;
Sugimachi, K. ;
Toi, M. ;
Tominaga, T. ;
Uchino, J. ;
Yoshida, M. ;
Coles, C. E. ;
Haybittle, J. L. ;
Moebus, V. ;
Leonard, C. F. ;
Calais, G. ;
Garaud, P. ;
Collett, V. ;
Davies, C. ;
Delmestri, A. ;
Sayer, J. ;
Harvey, V. J. ;
Holdaway, I. M. ;
Kay, R. G. ;
Mason, B. H. ;
Forbe, J. F. ;
Franci, P. A. .
LANCET ONCOLOGY, 2018, 19 (01) :27-39
[2]   Predictive Value of Breast MRI Background Parenchymal Enhancement for Neoadjuvant Treatment Response among HER2-Patients [J].
Arasu, Vignesh A. ;
Kim, Paul ;
Li, Wen ;
Strand, Fredrik ;
McHargue, Cody ;
Harnish, Roy ;
Newitt, David C. ;
Jones, Ella F. ;
Glymour, M. Maria ;
Kornak, John ;
Esserman, Laura J. ;
Hylton, Nola M. .
JOURNAL OF BREAST IMAGING, 2020, 2 (04) :352-360
[3]   Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI [J].
Braman, Nathaniel M. ;
Etesami, Maryam ;
Prasanna, Prateek ;
Dubchuk, Christina ;
Gilmore, Hannah ;
Tiwari, Pallavi ;
Pletcha, Donna ;
Madabhushi, Anant .
BREAST CANCER RESEARCH, 2017, 19
[4]   MRI background parenchymal enhancement, breast density and serum hormones in postmenopausal women [J].
Brooks, Jennifer D. ;
Sung, Janice S. ;
Pike, Malcolm C. ;
Orlow, Irene ;
Stanczyk, Frank Z. ;
Bernstein, Jonine L. ;
Morris, Elizabeth A. .
INTERNATIONAL JOURNAL OF CANCER, 2018, 143 (04) :823-830
[5]   Radiomics MRI for lymph node status prediction in breast cancer patients: the state of art [J].
Calabrese, Alessandro ;
Santucci, Domiziana ;
Landi, Roberta ;
Zobel, Bruno Beomonte ;
Faiella, Eliodoro ;
de Felice, Carlo .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2021, 147 (06) :1587-1597
[6]   Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients [J].
Chen, Shujun ;
Shu, Zhenyu ;
Li, Yongfeng ;
Chen, Bo ;
Tang, Lirong ;
Mo, Wenju ;
Shao, Guoliang ;
Shao, Feng .
FRONTIERS IN ONCOLOGY, 2020, 10
[7]   Radiomics in breast cancer classification and prediction [J].
Conti, Allegra ;
Duggento, Andrea ;
Indovina, Iole ;
Guerrisi, Maria ;
Toschi, Nicola .
SEMINARS IN CANCER BIOLOGY, 2021, 72 :238-250
[8]   De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017 [J].
Curigliano, G. ;
Burstein, H. J. ;
Winer, E. P. ;
Gnant, M. ;
Dubsky, P. ;
Loibl, S. ;
Colleoni, M. ;
Regan, M. M. ;
Piccart-Gebhart, M. ;
Senn, H. -J. ;
Thurlimann, B. ;
Andre, F. ;
Baselga, J. ;
Bergh, J. ;
Bonnefoi, H. ;
Brucker, S. Y. ;
Cardoso, F. ;
Carey, L. ;
Ciruelos, E. ;
Cuzick, J. ;
Denkert, C. ;
Di Leo, A. ;
Ejlertsen, B. ;
Francis, P. ;
Galimberti, V. ;
Garber, J. ;
Gulluoglu, B. ;
Goodwin, P. ;
Harbeck, N. ;
Hayes, D. F. ;
Huang, C. -S. ;
Huober, J. ;
Khaled, H. ;
Jassem, J. ;
Jiang, Z. ;
Karlsson, P. ;
Morrow, M. ;
Orecchia, R. ;
Osborne, K. C. ;
Pagani, O. ;
Partridge, A. H. ;
Pritchard, K. ;
Ro, J. ;
Rutgers, E. J. T. ;
Sedlmayer, F. ;
Semiglazov, V. ;
Shao, Z. ;
Smith, I. ;
Toi, M. ;
Tutt, A. .
ANNALS OF ONCOLOGY, 2017, 28 (08) :1700-1712
[9]   Breast Cancer Statistics, 2022 [J].
Giaquinto, Angela N. ;
Sung, Hyuna ;
Miller, Kimberly D. ;
Kramer, Joan L. ;
Newman, Lisa A. ;
Minihan, Adair ;
Jemal, Ahmedin ;
Siegel, Rebecca L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2022, 72 (06) :524-541
[10]   MRI of the tumor microenvironment [J].
Gillies, RJ ;
Raghunand, N ;
Karczmar, GS ;
Bhujwalla, ZM .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2002, 16 (04) :430-450