A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data

被引:1
作者
Fang, Kun [1 ]
Pan, Julong [1 ]
Li, Lingyi [1 ]
Xiang, Ruihan [1 ]
机构
[1] China Jiliang Univ, Coll Informat Engn, Hangzhou 310018, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 78卷 / 01期
关键词
Fall detection; skip; -connection; depthwise separable convolution; generative adversarial networks; inertial sensor; ANOMALY DETECTION; NETWORK;
D O I
10.32604/cmc.2023.045008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the widespread use of Internet of Things (IoT) technology in daily life and the considerable safety risks of falls for elderly individuals, research on IoT-based fall detection systems has gained much attention. This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip -connection (Skip-DSCGAN) for fall detection. The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data. A semisupervised learning approach is adopted to train the model using only activities of daily living (ADL) data, which can avoid data imbalance problems. Furthermore, a quantile-based approach is employed to determine the fall threshold, which makes the fall detection framework more robust. This proposed fall detection framework is evaluated against four other generative adversarial network (GAN) models with superior anomaly detection performance using two fall public datasets (SisFall & MobiAct). The test results show that the proposed method achieves better results, reaching 96.93% and 92.75% accuracy on the above two test datasets, respectively. At the same time, the proposed method also achieves satisfactory results in terms of model size and inference delay time, making it suitable for deployment on wearable devices with limited resources. In addition, this paper also compares GAN-based semisupervised learning methods with supervised learning methods commonly used in fall detection. It clarifies the advantages of GANbased semisupervised learning methods in fall detection.
引用
收藏
页码:493 / 514
页数:22
相关论文
共 50 条
  • [21] An efficient vision based elderly care monitoring framework using fall detection
    Malik, Rishabh
    Rastogi, Kalash
    Tripathi, Vikas
    Badal, Tapas
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2019, 22 (04) : 603 - 611
  • [22] SKIP: Accurate Fall Detection Based on Skeleton Keypoint Association and Critical Feature Perception
    Du, Chenjie
    Jin, Ran
    Tang, Hao
    Jiang, Qiuping
    He, Zhiwei
    IEEE SENSORS JOURNAL, 2024, 24 (09) : 14812 - 14824
  • [23] A Novel Embedded Deep Learning Wearable Sensor for Fall Detection
    Campanella, Sara
    Alnasef, Alaa
    Falaschetti, Laura
    Belli, Alberto
    Pierleoni, Paola
    Palma, Lorenzo
    IEEE SENSORS JOURNAL, 2024, 24 (09) : 15219 - 15229
  • [24] Inertial measurement and heart-rate sensor-based dataset for geriatric fall detection using custom built wrist-worn device
    Nandi, Purab
    Anupama, K. R.
    Agarwal, Himanish
    Patel, Kishan
    Bang, Vedant
    Bharat, Manan
    Guru, Madhen Vyas
    DATA IN BRIEF, 2024, 52
  • [25] Automatic Fall Detection using Smartphone Acceleration Sensor
    Tran Tri Dang
    Hai Truong
    Tran Khanh Dang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (12) : 123 - 129
  • [26] Unobtrusive Fall Detection at Home Using Kinect Sensor
    Kepski, Michal
    Kwolek, Bogdan
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PT I, 2013, 8047 : 457 - 464
  • [27] A framework for elders fall detection using deep learning
    Mobsite, Sara
    Alaoui, Nabih
    Boulmalf, Mohammed
    2020 6TH IEEE CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'20), 2020, : 69 - 74
  • [28] Sensor-based fall detection systems: a review
    Nooruddin, Sheikh
    Islam, Md Milon
    Sharna, Falguni Ahmed
    Alhetari, Husam
    Kabir, Muhammad Nomani
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 13 (5) : 2735 - 2751
  • [29] Sensor-based fall detection systems: a review
    Sheikh Nooruddin
    Md. Milon Islam
    Falguni Ahmed Sharna
    Husam Alhetari
    Muhammad Nomani Kabir
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 2735 - 2751
  • [30] A survey of fall detection model based on wearable sensor
    Li, Congcong
    Teng, Guifa
    Zhang, Yuting
    2019 12TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI), 2019, : 181 - 186