Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics

被引:35
|
作者
Faroughi, Salah A. [1 ]
Pawar, Nikhil M. [1 ]
Fernandes, Celio [1 ,2 ]
Raissi, Maziar [3 ]
Das, Subasish [4 ]
Kalantari, Nima K. [5 ]
Kourosh Mahjour, Seyed [1 ]
机构
[1] Texas State Univ, Ingram Sch Engn, Geointelligence Lab, San Marcos, TX 78666 USA
[2] Univ Minho, Ctr Math CMAT, Campus Gualtar, P-4710057 Braga, Portugal
[3] Univ Colorado Boulder, Dept Appl Math, Boulder, CO 61010 USA
[4] Texas State Univ, Ingram Sch Engn, Artificial Intelligence Transportat Lab, San Marcos, TX 78666 USA
[5] Texas A&M Univ, Comp Sci & Engn Dept, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
physics-guided neural networks; physics-informed neural networks; physics-encoded neural networks; solid mechanics; fluid mechanics; machine learning; deep learning; scientific computing; artificial intelligence; data-driven engineering; machine learning for engineering applications; multiphysics modeling and simulation; physics-based simulations; FATIGUE LIFE PREDICTION; DEEP LEARNING FRAMEWORK; TOPOLOGY OPTIMIZATION; INVERSE PROBLEMS; UNIVERSAL APPROXIMATION; DAMAGE IDENTIFICATION; NONLINEAR OPERATORS; POROUS-MEDIA; MACHINE; FLOW;
D O I
10.1115/1.4064449
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Advancements in computing power have recently made it possible to utilize machine learning and deep learning to push scientific computing forward in a range of disciplines, such as fluid mechanics, solid mechanics, materials science, etc. The incorporation of neural networks is particularly crucial in this hybridization process. Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data are sparse, which is the case in many scientific and engineering domains. Nonetheless, neural networks provide a solid foundation to respect physics-driven or knowledge-based constraints during training. Generally speaking, there are three distinct neural network frameworks to enforce the underlying physics: (i) physics-guided neural networks (PgNNs), (ii) physics-informed neural networks (PiNNs), and (iii) physics-encoded neural networks (PeNNs). These methods provide distinct advantages for accelerating the numerical modeling of complex multiscale multiphysics phenomena. In addition, the recent developments in neural operators (NOs) add another dimension to these new simulation paradigms, especially when the real-time prediction of complex multiphysics systems is required. All these models also come with their own unique drawbacks and limitations that call for further fundamental research. This study aims to present a review of the four neural network frameworks (i.e., PgNNs, PiNNs, PeNNs, and NOs) used in scientific computing research. The state-of-the-art architectures and their applications are reviewed, limitations are discussed, and future research opportunities are presented in terms of improving algorithms, considering causalities, expanding applications, and coupling scientific and deep learning solvers.
引用
收藏
页数:31
相关论文
共 50 条
  • [11] Δ-PINNs: Physics-informed neural networks on complex geometries
    Costabal, Francisco Sahli
    Pezzuto, Simone
    Perdikaris, Paris
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [12] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [13] Spatiotemporal parallel physics-informed neural networks: A framework to solve inverse problems in fluid mechanics
    Xu, Shengfeng
    Yan, Chang
    Zhang, Guangtao
    Sun, Zhenxu
    Huang, Renfang
    Ju, Shengjun
    Guo, Dilong
    Yang, Guowei
    PHYSICS OF FLUIDS, 2023, 35 (06)
  • [14] Parametric extended physics-informed neural networks for solid mechanics with complex mixed boundary conditions
    Cao, Geyong
    Wang, Xiaojun
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2025, 194
  • [15] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [16] Physics-informed neural networks for acoustic boundary admittance estimation
    Schmid, Johannes D.
    Bauerschmidt, Philipp
    Gurbuz, Caglar
    Eser, Martin
    Marburg, Steffen
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 215
  • [17] Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue
    Dourado, Arinan
    Viana, Felipe A. C.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2020, 20 (06)
  • [18] Optimal control of PDEs using physics-informed neural networks
    Mowlavi, Saviz
    Nabi, Saleh
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [19] A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics
    Zhao, Chi
    Zhang, Feifei
    Lou, Wenqiang
    Wang, Xi
    Yang, Jianyong
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [20] Tackling the curse of dimensionality with physics-informed neural networks
    Hu, Zheyuan
    Shukla, Khemraj
    Karniadakis, George Em
    Kawaguchi, Kenji
    NEURAL NETWORKS, 2024, 176