Analysis of Dieback in a Coastal Pinewood in Campania, Southern Italy, through High-Resolution Remote Sensing

被引:7
作者
Nicoletti, Rosario [1 ,2 ]
De Masi, Luigi [3 ]
Migliozzi, Antonello [2 ]
Calandrelli, Marina Maura [4 ]
机构
[1] Res Ctr Olive Fruit & Citrus Crops, Council Agr Res & Econ, I-81100 Caserta, Italy
[2] Univ Naples Federico II, Dept Agr Sci, I-80055 Portici, Italy
[3] Natl Res Council Italy CNR, Inst Biosci & Bioresources IBBR, I-80055 Portici, Italy
[4] Natl Res Council CNR, Res Inst Terr Ecosyst IRET, I-80100 Naples, Italy
来源
PLANTS-BASEL | 2024年 / 13卷 / 02期
关键词
Pinus pinea; Toumeyella parvicornis; remote sensing; GIS; PINUS-PINEA; TOMICUS-DESTRUENS; PLANTED FORESTS; CLIMATE-CHANGE; NDVI; SPP; EUROPE; DAMAGE; PESTS; WATER;
D O I
10.3390/plants13020182
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
For some years, the stone pine (Pinus pinea L.) forests of the Domitian coast in Campania, Southern Italy, have been at risk of conservation due to biological adversities. Among these, the pine tortoise scale Toumeyella parvicornis (Cockerell) has assumed a primary role since its spread in Campania began. Observation of pine forests using remote sensing techniques was useful for acquiring information on the health state of the vegetation. In this way, it was possible to monitor the functioning of the forest ecosystem and identify the existence of critical states. To study the variation in spectral behavior and identify conditions of plant stress due to the action of pests, the analysis of the multispectral data of the Copernicus Sentinel-2 satellite, acquired over seven years between 2016 and 2022, was conducted on the Domitian pine forest. This method was used to plot the values of individual pixels over time by processing spectral indices using Geographic Information System (GIS) tools. The use of vegetation indices has made it possible to highlight the degradation suffered by the vegetation due to infestation by T. parvicornis. The results showed the utility of monitoring the state of the vegetation through high-resolution remote sensing to protect and preserve the pine forest ecosystem peculiar to the Domitian coast.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] HIGH-RESOLUTION REMOTE SENSING IMAGE SCENE UNDERSTANDING: A REVIEW
    Zhu, Qiqi
    Sun, Xiongli
    Zhong, Yanfei
    Zhang, Liangpei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3061 - 3064
  • [22] Learning to Semantically Segment High-Resolution Remote Sensing Images
    Nogueira, Keiller
    Dalla Mura, Mauro
    Chanussot, Jocelyn
    Schwartz, William Robson
    dos Santos, Jefersson A.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3566 - 3571
  • [23] Study on the Aquaculture of Large Yellow Croaker in the Coastal Zone of Zhejiang Province Based on High-Resolution Remote Sensing
    Yin, Jie
    Cai, Lina
    Li, Jiahua
    Yan, Xiaojun
    Zhang, Beibei
    REMOTE SENSING, 2025, 17 (01)
  • [24] Effect of Synchronous Atmospheric Correction on the Accuracy of High-Resolution Remote Sensing Indices Images
    Xu, Lingling
    Xiong, Wei
    Yi, Weining
    Cui, Wenyu
    Liu, Xiao
    Wang, Yuyao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15102 - 15121
  • [25] A High-Resolution Remote-Sensing-Based Method for Urban Ecological Quality Evaluation
    Huang, Huiping
    Li, Qiangzi
    Zhang, Yuan
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [26] Sinis Peninsula (Western Sardinia, Italy) coastal system analysis through hydrodynamic and remote-sensing techniques
    Atzeni, Andrea
    Pani, Daniela
    Ibba, Nicola
    COASTLINE CHANGES: INTERRELATION OF CLIMATE AND GEOLOGICAL PROCESSES, 2007, 426 : 189 - 197
  • [27] Identification of shelterbelt width from high-resolution remote sensing imagery
    Deng, Rongxin
    Yang, Gao
    Li, Ying
    Xu, Zhengran
    Zhang, Xing
    Zhang, Lu
    Li, Chunjing
    AGROFORESTRY SYSTEMS, 2022, 96 (08) : 1091 - 1101
  • [28] Multiscale Progressive Segmentation Network for High-Resolution Remote Sensing Imagery
    Hang, Renlong
    Yang, Ping
    Zhou, Feng
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] High-Resolution Polar Network for Object Detection in Remote Sensing Images
    He, Xu
    Ma, Shiping
    He, Linyuan
    Ru, Le
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] High-resolution remote sensing for quantifying vegetation structure as avian habitat
    Harju, Seth
    Harju, Tarita
    Berg, Jodi
    Alward, Richard
    Cambrin, Scott
    WILDLIFE SOCIETY BULLETIN, 2025, 49 (01):