Machine-learning model comprising five clinical indices and liver stiffness measurement can accurately identify MASLD-related liver fibrosis

被引:12
作者
Fan, Rong [1 ]
Yu, Ning [1 ]
Li, Guanlin [2 ,3 ]
Arshad, Tamoore [4 ]
Liu, Wen-Yue [5 ]
Wong, Grace Lai-Hung [2 ,3 ]
Liang, Xieer [1 ]
Chen, Yongpeng [1 ]
Jin, Xiao-Zhi [6 ]
Leung, Howard Ho-Wai [7 ]
Chen, Jinjun [1 ]
Wang, Xiao-Dong [8 ]
Yip, Terry Cheuk-Fung [2 ,3 ]
Sanyal, Arun J. [9 ]
Sun, Jian [1 ]
Wong, Vincent Wai-Sun [2 ,3 ,10 ]
Zheng, Ming-Hua [6 ,8 ]
Hou, Jinlin [1 ,11 ]
机构
[1] Southern Med Univ, Nanfang Hosp, Guangdong Prov Clin Res Ctr Viral Hepatitis, Guangdong Prov Key Lab Viral Hepatitis Res,Dept In, Guangzhou, Peoples R China
[2] Chinese Univ Hong Kong, Med Data Analyt Ctr, Dept Med & Therapeut, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Inst Digest Dis, State Key Lab Digest Dis, Hong Kong, Peoples R China
[4] Virginia Commonwealth Univ, Dept Internal Med, Richmond, VA USA
[5] Wenzhou Med Univ, Dept Endocrinol, Affiliated Hosp 1, Wenzhou, Peoples R China
[6] Wenzhou Med Univ, Affiliated Hosp 1, Dept Hepatol, MAFLD Res Ctr, 2 Fuxue Lane, Wenzhou 325000, Peoples R China
[7] Chinese Univ Hong Kong, Dept Anat & Cellular Pathol, Hong Kong, Peoples R China
[8] Key Lab Diag & Treatment Dev Chron Liver Dis Zheji, Wenzhou, Peoples R China
[9] Virginia Commonwealth Univ, Div Gastroenterol, Richmond, VA USA
[10] Prince Wales Hosp, Dept Med & Therapeut, Shatin, 9-F Clin Sci Bldg,30-32 Ngan Shing St, Hong Kong, Peoples R China
[11] Southern Med Univ, Nanfang Hosp, Dept Infect Dis, Guangzhou 510515, Peoples R China
关键词
advanced fibrosis; aMAP score; cirrhosis; machine learning; metabolic dysfunction-associated steatotic liver disease; SIMPLE NONINVASIVE INDEX; SCORE; ELASTOGRAPHY; PREDICTION; DISEASE; TESTS; RISK;
D O I
10.1111/liv.15818
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background & Aims: aMAP score, as a hepatocellular carcinoma risk score, is proven to be associated with the degree of chronic hepatitis B-related liver fibrosis. We aimed to evaluate the ability of aMAP score for metabolic dysfunction-associated steatotic liver disease (MASLD; formerly NAFLD)-related fibrosis diagnosis and establish a machine-learning (ML) model to improve the diagnostic performance.Methods: A total of 946 biopsy-proved MASLD patients from China and the United States were included in the analysis. The aMAP score, demographic/clinical indices and liver stiffness measurement (LSM) were included in seven ML algorithms to build fibrosis diagnostic models in the training set (N = 703). The performance of ML models was evaluated in the external validation set (N = 125).Results: The AUROCs of aMAP versus fibrosis-4 index (FIB-4) and aspartate aminotransferase-platelet ratio (APRI) in cirrhosis and advanced fibrosis were (0.850 vs. 0.857 [P = 0.734], 0.735 [P = 0.001]) and (0.759 vs. 0.795 [P = 0.027], 0.709 [P = 0.049]). When using dual cut-off values, aMAP had a smaller uncertainty area and higher accuracy (26.9%, 86.6%) than FIB-4 (37.3%, 85.0%) and APRI (59.0%, 77.3%) in cirrhosis diagnosis. The seven ML models performed satisfactorily in most cases. In the validation set, the ML model comprising LSM and 5 indices (including age, sex, platelets, albumin and total bilirubin used in aMAP calculator), built by logistic regression algorithm (called LSM-plus model), exhibited excellent performance. In cirrhosis and advanced fibrosis detection, the LSM-plus model had higher accuracy (96.8%, 91.2%) than LSM alone (86.4%, 67.2%) and Agile score (76.0%, 83.2%), respectively. Additionally, the LSM-plus model also displayed high specificity (cirrhosis: 98.3%; advanced fibrosis: 92.6%) with satisfactory AUROC (0.932, 0.875, respectively) and sensitivity (88.9%, 82.4%, respectively).Conclusions: The aMAP score is capable of diagnosing MASLD-related fibrosis. The LSM-plus model could accurately identify MASLD-related cirrhosis and advanced fibrosis.
引用
收藏
页码:749 / 759
页数:11
相关论文
共 27 条
[1]   New sequential combinations of non-invasive fibrosis tests provide an accurate diagnosis of advanced fibrosis in NAFLD [J].
Boursier, Jerome ;
Guillaume, Maeva ;
Leroy, Vincent ;
Irles, Marie ;
Roux, Marine ;
Lannes, Adrien ;
Foucher, Juliette ;
Zuberbuhler, Floraine ;
Delabaudiere, Cyrielle ;
Barthelon, Justine ;
Michalak, Sophie ;
Hiriart, Jean-Baptiste ;
Peron, Jean-Marie ;
Gerster, Theophile ;
Le Bail, Brigitte ;
Riou, Jeremie ;
Hunault, Gilles ;
Merrouche, Wassil ;
Oberti, Frederic ;
Pelade, Laurence ;
Fouchard, Isabelle ;
Bureau, Christophe ;
Cales, Paul ;
de Ledinghen, Victor .
JOURNAL OF HEPATOLOGY, 2019, 71 (02) :389-396
[2]   Diagnostic accuracy and prognostic significance of blood fibrosis tests and liver stiffness measurement by FibroScan in non-alcoholic fatty liver disease [J].
Boursier, Jerome ;
Vergniol, Julien ;
Guillet, Anne ;
Hiriart, Jean-Baptiste ;
Lannes, Adrien ;
Le Bail, Brigitte ;
Michalak, Sophie ;
Chermak, Faiza ;
Bertrais, Sandrine ;
Foucher, Juliette ;
Oberti, Frederic ;
Charbonnier, Maude ;
Fouchard-Hubert, Isabelle ;
Rousselet, Marie-Christine ;
Cales, Paul ;
de Ledinghen, Victor .
JOURNAL OF HEPATOLOGY, 2016, 65 (03) :570-578
[3]   Machine learning models are superior to noninvasive tests in identifying clinically significant stages of NAFLD and NAFLD-related cirrhosis [J].
Chang, Devon ;
Truong, Emily ;
Mena, Edward A. ;
Pacheco, Fabiana ;
Wong, Micaela ;
Guindi, Maha ;
Todo, Tsuyoshi T. ;
Noureddin, Nabil ;
Ayoub, Walid ;
Yang, Ju Dong ;
Kim, Irene K. ;
Kohli, Anita ;
Alkhouri, Naim ;
Harrison, Stephen ;
Noureddin, Mazen .
HEPATOLOGY, 2023, 77 (02) :546-557
[4]   Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B [J].
Chen, Yang ;
Luo, Yan ;
Huang, Wei ;
Hu, Die ;
Zheng, Rong-qin ;
Gong, Shu-zhen ;
Meng, Fan-kun ;
Yang, Hong ;
Lin, Hong-jun ;
Sun, Yan ;
Wang, Xiu-yan ;
Wu, Tao ;
Ren, Jie ;
Pei, Shu-Fang ;
Zheng, Ying ;
He, Yun ;
Hu, Yu ;
Yang, Na ;
Yan, Hongmei .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :18-23
[5]   Model consisting of ultrasonographic and simple blood indexes accurately identify compensated hepatitis B cirrhosis [J].
Chen, Yong-Peng ;
Dai, Lin ;
Wang, Jing-Lin ;
Zhu, You-Fu ;
Feng, Xiao-Rong ;
Hou, Jin-Lin .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2008, 23 (08) :1228-1234
[6]   Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent-enhanced CT Images in the Liver [J].
Choi, Kyu Jin ;
Jang, Jong Keon ;
Lee, Seung Soo ;
Sung, Yu Sub ;
Shim, Woo Hyun ;
Kim, Ho Sung ;
Yun, Jessica ;
Choi, Jin-Young ;
Lee, Yedaun ;
Kang, Bo-Kyeong ;
Kim, Jin Hee ;
Kim, So Yeon ;
Yu, Eun Sil .
RADIOLOGY, 2018, 289 (03) :688-697
[7]   Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease [J].
Eddowes, Peter J. ;
Sasso, Magali ;
Allison, Michael ;
Tsochatzis, Emmanouil ;
Anstee, Quentin M. ;
Sheridan, David ;
Guha, Indra N. ;
Cobbold, Jeremy F. ;
Deeks, Jonathan J. ;
Paradis, Valerie ;
Bedossa, Pierre ;
Newsome, Philip N. .
GASTROENTEROLOGY, 2019, 156 (06) :1717-1730
[8]   aMAP Score and Its Combination With Liver Stiffness Measurement Accurately Assess Liver Fibrosis in Chronic Hepatitis B Patients [J].
Fan, Rong ;
Li, Guanlin ;
Yu, Ning ;
Chang, Xiujuan ;
Arshad, Tamoore ;
Liu, Wen-Yue ;
Chen, Yan ;
Wong, Grace Lai-Hung ;
Jiang, Yiyue ;
Liang, Xieer ;
Chen, Yongpeng ;
Jin, Xiao-Zhi ;
Dong, Zheng ;
Leung, Howard Ho-Wai ;
Wang, Xiao-Dong ;
Zeng, Zhen ;
Yip, Terry Cheuk-Fung ;
Xie, Qing ;
Tan, Deming ;
You, Shaoli ;
Ji, Dong ;
Zhao, Jun ;
Sanyal, Arun J. ;
Sun, Jian ;
Zheng, Ming-Hu ;
Wong, Vincent Wai-Sun ;
Yang, Yongping ;
Hou, Jinlin .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2023, 21 (12) :3070-+
[9]   Novel, high accuracy models for hepatocellular carcinoma prediction based on longitudinal data and cell-free DNA signatures [J].
Fan, Rong ;
Chen, Lei ;
Zhao, Siru ;
Yang, Hao ;
Li, Zhengmao ;
Qian, Yunsong ;
Ma, Hong ;
Liu, Xiaolong ;
Wang, Chuanxin ;
Liang, Xieer ;
Bai, Jian ;
Xie, Jianping ;
Fan, Xiaotang ;
Xie, Qing ;
Hao, Xin ;
Wang, Chunying ;
Yang, Song ;
Gao, Yanhang ;
Bai, Honglian ;
Dou, Xiaoguang ;
Liu, Jingfeng ;
Wu, Lin ;
Jiang, Guoqing ;
Xia, Qi ;
Zheng, Dan ;
Rao, Huiying ;
Xia, Jie ;
Shang, Jia ;
Gao, Pujun ;
Xie, Dongying ;
Yu, Yanlong ;
Yang, Yongfeng ;
Gao, Hongbo ;
Liu, Yali ;
Sun, Aimin ;
Jiang, Yongfang ;
Yu, Yanyan ;
Niu, Junqi ;
Sun, Jian ;
Wang, Hongyang ;
Hou, Jinlin .
JOURNAL OF HEPATOLOGY, 2023, 79 (04) :933-944
[10]   aMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis [J].
Fan, Rong ;
Papatheodoridis, George ;
Sun, Jian ;
Innes, Hamish ;
Toyoda, Hidenori ;
Xie, Qing ;
Mo, Shuyuan ;
Sypsa, Vana ;
Guha, Indra Neil ;
Kumada, Takashi ;
Niu, Junqi ;
Dalekos, George ;
Yasuda, Satoshi ;
Barnes, Eleanor ;
Lian, Jianqi ;
Suri, Vithika ;
Idilman, Ramazan ;
Barclay, Stephen T. ;
Dou, Xiaoguang ;
Berg, Thomas ;
Hayes, Peter C. ;
Flaherty, John F. ;
Zhou, Yuanping ;
Zhang, Zhengang ;
Buti, Maria ;
Hutchinson, Sharon J. ;
Guo, Yabing ;
Calleja, Jose Luis ;
Lin, Lanjia ;
Zhao, Longfeng ;
Chen, Yongpeng ;
Janssen, Harry L. A. ;
Zhu, Chaonan ;
Shi, Lei ;
Tang, Xiaoping ;
Gaggar, Anuj ;
Wei, Lai ;
Jia, Jidong ;
Irving, William L. ;
Johnson, Philip J. ;
Lampertico, Pietro ;
Hou, Jinlin .
JOURNAL OF HEPATOLOGY, 2020, 73 (06) :1368-1378