Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries

被引:33
作者
Huang, Honglan [1 ]
Liu, Chao [1 ]
Liu, Ziya [1 ]
Wu, Yunyan [1 ]
Liu, Yifan [1 ]
Fan, Jinbo
Zhang, Gen [1 ]
Xiong, Pan [1 ]
Zhu, Junwu [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Soft Chem & Funct Mat, Minist Educ, Nanjing 210021, Peoples R China
来源
ADVANCED POWDER MATERIALS | 2024年 / 3卷 / 01期
关键词
Composite solid-state electrolytes; Functional inorganic additives; Lithium metal batteries; High ionic conductivity; Dendrite-free anode; HIGH IONIC-CONDUCTIVITY; POLYMER ELECTROLYTE; MECHANICAL-PROPERTIES; HYBRID ELECTROLYTES; PERFORMANCE; CATHODE; STABILITY;
D O I
10.1016/j.apmate.2023.100141
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics. However, the main challenge lies in the limited electrochemical performance of solid-state polymer electrolytes, which hinders further practical applications. Incorporating functional inorganic additives is an effective approach to improve the performance, including increasing ionic conductivity, achieving dendrite inhibiting capability, and improving safety and stability. Herein, this review summarizes the latest developments of functional inorganic additives in composite solid-state electrolytes for flexible metal batteries with special emphasis on their mechanisms, strategies, and cutting-edge applications, in particular, the relationship between them is discussed in detail. Finally, the perspective on future research directions and the key challenges on this topic are outlooked.
引用
收藏
页数:18
相关论文
共 138 条
[1]   Composite polymer electrolyte with high inorganic additive contents to enable metallic lithium anode [J].
Amici, Julia ;
Calderon, Cecile Andrea ;
Versaci, Daniele ;
Luque, Guillermina ;
Barraco, Daniel ;
Leiva, Ezequiel ;
Francia, Carlotta ;
Bodoardo, Silvia .
ELECTROCHIMICA ACTA, 2022, 404
[2]   Tantalum oxide nanosheets/polypropylene composite separator constructing lithium-ion channels for stable lithium metal batteries [J].
Chen, Long ;
Lin, Xiaohui ;
Dang, Weiqi ;
Huang, Hao ;
Liu, Guoxia ;
Yang, Zhenyu .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2023, 6 (01)
[3]   Direct Ink Writing of Polymer Composite Electrolytes with Enhanced Thermal Conductivities [J].
Cheng, Meng ;
Ramasubramanian, Ajaykrishna ;
Rasul, Md Golam ;
Jiang, Yizhou ;
Yuan, Yifei ;
Foroozan, Tara ;
Deivanayagam, Ramasubramonian ;
Tamadoni Saray, Mahmoud ;
Rojaee, Ramin ;
Song, Boao ;
Yurkiv, Vitaliy Robert ;
Pan, Yayue ;
Mashayek, Farzad ;
Shahbazian-Yassar, Reza .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (04)
[4]   Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries [J].
Cheng, Zhiwei ;
Liu, Tong ;
Zhao, Bin ;
Shen, Fei ;
Jin, Haiyun ;
Han, Xiaogang .
ENERGY STORAGE MATERIALS, 2021, 34 :388-416
[5]   Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Zhao, Ning ;
Guo, Xiangxin ;
Nan, Ce-Wen ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2019, 17 :309-316
[6]   An ultra-durable gel electrolyte stabilizing ion deposition and trapping polysulfides for lithium-sulfur batteries [J].
Ding, Chenfeng ;
Huang, Lingbo ;
Guo, Yiran ;
Lan, Jin-le ;
Yu, Yunhua ;
Fu, Xuewei ;
Zhong, Wei-Hong ;
Yang, Xiaoping .
ENERGY STORAGE MATERIALS, 2020, 27 :25-34
[7]   Composite solid electrolytes for all-solid-state lithium batteries [J].
Dirican, Mahmut ;
Yan, Chaoyi ;
Zhu, Pei ;
Zhang, Xiangwu .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46) :27-46
[8]   Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization [J].
Du, Mingjie ;
Liao, Kaiming ;
Lu, Qian ;
Shao, Zongping .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (06) :1780-1804
[9]   Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure [J].
Duffner, Fabian ;
Kronemeyer, Niklas ;
Tuebke, Jens ;
Leker, Jens ;
Winter, Martin ;
Schmuch, Richard .
NATURE ENERGY, 2021, 6 (02) :123-134
[10]   A review of lithium-O2/CO2 and lithium-CO2 batteries: Advanced electrodes/materials/electrolytes and functional mechanisms [J].
Ezeigwe, Raphael Ejikeme ;
Dong, Li ;
Manjunatha, Revanasiddappa ;
Zuo, Yinze ;
Deng, Shu-Qi ;
Tan, Michelle ;
Yan, Wei ;
Zhang, Jiujun ;
Wilkinson, David P. ;
Ezeigwe, Ejikeme Raphael .
NANO ENERGY, 2022, 95