BSE PROPERTY OF FRÉCHET ALGEBRA

被引:0
|
作者
Rejali, Ali [1 ]
Amiri, Mitra [2 ]
机构
[1] Univ Isfahan, Fac Math & Stat, Dept Pure Math, Esfahan, Iran
[2] Univ Isfahan, Fac Math & Stat, Dept Pure Math, Esfahan 8174673441, Iran
关键词
BSE algebra; BSE function; commutative Frechet algebra; Frechet C*-algebra; multiplier algebra; uniform Frechet algebra; COMMUTATIVE BANACH-ALGEBRAS; FOURIER; REPRESENTATIONS;
D O I
10.1216/rmj.2023.53.1553
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A class of commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein-type inequality was introduced by Takahasi and Hatori. We generalize this property for the commutative Frechet algebra (A,pl)l is an element of N. Moreover, we verify and generalize some of the main results in the class of Banach algebras, for the Frechet case. We prove that all Frechet C*-algebras and also uniform Frechet algebras are BSE algebras. Also, we show that C infinity[0, 1] is not a Frechet BSE algebra.
引用
收藏
页码:1553 / 1570
页数:18
相关论文
共 50 条