Automated CT Lung Cancer Screening Workflow Using 3D Camera

被引:1
|
作者
Teixeira, Brian [1 ]
Singh, Vivek [1 ]
Tamersoy, Birgi [2 ]
Prokein, Andreas [3 ]
Kapoor, Ankur [1 ]
机构
[1] Siemens Healthineers, Digital Technol & Innovat, Princeton, NJ 08540 USA
[2] Siemens Healthineers, Digital Technol & Innovat, Erlangen, Germany
[3] Siemens Healthineers, Comp Tomog, Forchheim, Germany
关键词
CT; Lung Screening; Dose; WED; 3D Camera;
D O I
10.1007/978-3-031-43990-2_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite recent developments in CT planning that enabled automation in patient positioning, time-consuming scout scans are still needed to compute dose profile and ensure the patient is properly positioned. In this paper, we present a novel method which eliminates the need for scout scans in CT lung cancer screening by estimating patient scan range, isocenter, and Water Equivalent Diameter (WED) from 3D camera images. We achieve this task by training an implicit generative model on over 60,000 CT scans and introduce a novel approach for updating the prediction using real-time scan data. We demonstrate the effectiveness of our method on a testing set of 110 pairs of depth data and CT scan, resulting in an average error of 5 mm in estimating the isocenter, 13 mm in determining the scan range, 10 mm and 16 mm in estimating the AP and lateral WED respectively. The relative WED error of our method is 4%, which is well within the International Electrotechnical Commission (IEC) acceptance criteria of 10%.
引用
收藏
页码:423 / 431
页数:9
相关论文
共 50 条
  • [41] An Automated, Open-Source Workflow for the Generation of (3D) Fragment Libraries
    Dekker, Tom
    Janssen, Mathilde A. C. H.
    Sutherland, Christina
    Aben, Rene W. M.
    Scheeren, Hans W.
    Blanco-Ania, Daniel
    Rutjes, Floris P. J. T.
    Wijtmans, Maikel
    de Esch, Iwan J. P.
    ACS MEDICINAL CHEMISTRY LETTERS, 2023, 14 (05): : 583 - 590
  • [42] Texture Analysis of 3D and 4D PET/CT Images of Lung Cancer
    Oliver, J.
    Budzevich, M.
    Zhang, G.
    Latifi, K.
    Kuykendall, C.
    Hoffe, S.
    Montilla-Soler, J.
    Eikman, E.
    Moros, E.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [44] Coming "3D" for digital camera: Development of 3d digital camera
    Tsurukawa M.
    Tanaka K.
    Shikata D.
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2011, 65 (03): : 286 - 289
  • [45] Development of an Early Screening System for Scoliosis Using Depth Camera and 3D Symmetry Analysis
    Kanai S.
    Sudo H.
    Kokabu T.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2021, 87 (12): : 912 - 916
  • [46] LUNG NODULE DETECTION IN CT USING 3D CONVOLUTIONAL NEURAL NETWORKS
    Huang, Xiaojie
    Shan, Junjie
    Vaidya, Vivek
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 379 - 383
  • [47] A pictorial review of lung torsion using 3D CT cinematic rendering
    Jhala, Khushboo
    Madan, Rachna
    Hammer, Mark
    EMERGENCY RADIOLOGY, 2021, 28 (01) : 171 - 176
  • [48] A pictorial review of lung torsion using 3D CT cinematic rendering
    Khushboo Jhala
    Rachna Madan
    Mark Hammer
    Emergency Radiology, 2021, 28 : 171 - 176
  • [49] Lung metastases detection in CT images using 3D template matching
    Wang, Peng
    DeNunzio, Andrea
    Okunieff, Paul
    O'Dell, Walter G.
    MEDICAL PHYSICS, 2007, 34 (03) : 915 - 922
  • [50] Automated Detection of Lung Cancer Using CT Scan Images
    Hoque, Ariful
    Farabi, A. K. M. Ashek
    Ahmed, Fahad
    Islam, Zahidul
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 1030 - 1033