Automated CT Lung Cancer Screening Workflow Using 3D Camera

被引:1
|
作者
Teixeira, Brian [1 ]
Singh, Vivek [1 ]
Tamersoy, Birgi [2 ]
Prokein, Andreas [3 ]
Kapoor, Ankur [1 ]
机构
[1] Siemens Healthineers, Digital Technol & Innovat, Princeton, NJ 08540 USA
[2] Siemens Healthineers, Digital Technol & Innovat, Erlangen, Germany
[3] Siemens Healthineers, Comp Tomog, Forchheim, Germany
关键词
CT; Lung Screening; Dose; WED; 3D Camera;
D O I
10.1007/978-3-031-43990-2_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite recent developments in CT planning that enabled automation in patient positioning, time-consuming scout scans are still needed to compute dose profile and ensure the patient is properly positioned. In this paper, we present a novel method which eliminates the need for scout scans in CT lung cancer screening by estimating patient scan range, isocenter, and Water Equivalent Diameter (WED) from 3D camera images. We achieve this task by training an implicit generative model on over 60,000 CT scans and introduce a novel approach for updating the prediction using real-time scan data. We demonstrate the effectiveness of our method on a testing set of 110 pairs of depth data and CT scan, resulting in an average error of 5 mm in estimating the isocenter, 13 mm in determining the scan range, 10 mm and 16 mm in estimating the AP and lateral WED respectively. The relative WED error of our method is 4%, which is well within the International Electrotechnical Commission (IEC) acceptance criteria of 10%.
引用
收藏
页码:423 / 431
页数:9
相关论文
共 50 条
  • [1] An Automated 3D Emphysema Extraction Method using Lung CT
    Liang, Tan Kok
    Tanaka, Toshiyuki
    Nakamura, Hidetoshi
    Shirahata, Toru
    Sugiura, Hiroaki
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 2994 - +
  • [2] Accuracy of automated patient positioning in CT using a 3D camera for body contour detection
    Ronald Booij
    Ricardo P.J. Budde
    Marcel L. Dijkshoorn
    Marcel van Straten
    European Radiology, 2019, 29 : 2079 - 2088
  • [3] Accuracy of automated patient positioning in CT using a 3D camera for body contour detection
    Booij, Ronald
    Budde, Ricardo P. J.
    Dijkshoorn, Marcel L.
    van Straten, Marcel
    EUROPEAN RADIOLOGY, 2019, 29 (04) : 2079 - 2088
  • [4] Patient Positioning in CT using a 3D Camera
    Graewert, Stephanie
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2020, 192 (02):
  • [5] Protocol for 3D screening of lung cancer spheroids using natural products
    Vega, Virneliz Fernandez
    Yang, Dong
    Jordan, Luis Ortiz
    Ye, Fei
    Conway, Louis
    Chen, Li Yun
    Shumate, Justin
    Baillargeon, Pierre
    Scampavia, Louis
    Parker, Christopher
    Shen, Ben
    Spicer, Timothy P.
    SLAS DISCOVERY, 2023, 28 (02) : 20 - 28
  • [6] Automated patient positioning in CT using a 3D camera for body contour detection: accuracy in pediatric patients
    Booij, Ronald
    van Straten, Marcel
    Wimmer, Andreas
    Budde, Ricardo P. J.
    EUROPEAN RADIOLOGY, 2021, 31 (01) : 131 - 138
  • [7] Autocorrection of lung boundary on 3D CT lung cancer images*
    Nurfauzi, R.
    Nugroho, H. A.
    Ardiyanto, I.
    Frannita, E. L.
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2021, 33 (05) : 518 - 527
  • [8] Automated patient positioning in CT using a 3D camera for body contour detection: accuracy in pediatric patients
    Ronald Booij
    Marcel van Straten
    Andreas Wimmer
    Ricardo P.J. Budde
    European Radiology, 2021, 31 : 131 - 138
  • [9] 3D Lung quantification using SPECT/CT
    Gillett, D.
    Bird, N.
    Cheow, H.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 : S45 - S45
  • [10] Development of Workflow and Tools for Collision Detection Using a Handheld 3D Mapping Camera
    Meltsner, M.
    Padilla, L.
    MEDICAL PHYSICS, 2018, 45 (06) : E377 - E377