DOMINO plus plus : Domain-Aware Loss Regularization for Deep Learning Generalizability

被引:0
|
作者
Stolte, Skylar E. [1 ]
Volle, Kyle [2 ]
Indahlastari, Aprinda [3 ,4 ]
Albizu, Alejandro [3 ,5 ]
Woods, Adam J. [3 ,4 ,5 ]
Brink, Kevin [6 ]
Hale, Matthew [9 ]
Fang, Ruogu [1 ,3 ,7 ,8 ]
机构
[1] Univ Florida UF, J Crayton Pruitt Family Dept Biomed Engn, Herbert Wertheim Coll Engn, Gainesville, FL 32611 USA
[2] Torch Technol LLC, Shalimar, FL USA
[3] UF, McKnight Brain Inst, Ctr Cognit Aging & Memory, Gainesville, FL 32611 USA
[4] UF, Dept Clin & Hlth Psychol, Coll Publ Hlth & Hlth Profess, Gainesville, FL USA
[5] UF, Dept Neurosci, Coll Med, Gainesville, FL USA
[6] US Air Force, Res Lab, Eglin Air Force Base, Valparaiso, FL USA
[7] UF, Herbert Wertheim Coll Engn, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[8] UF, Herbert Wertheim Coll Engn, Dept Comp Informat & Sci & Engn, Gainesville, FL 32611 USA
[9] UF, Herbert Wertheim Coll Engn, Dept Mech & Aerosp Engn, Gainesville, FL USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV | 2023年 / 14223卷
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Image Segmentation; Machine Learning Uncertainty; Model Calibration; Model Generalizability; Whole Head MRI; MRI;
D O I
10.1007/978-3-031-43901-8_68
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Out-of-distribution (OOD) generalization poses a serious challenge for modern deep learning (DL). OOD data consists of test data that is significantly different from the model's training data. DL models that perform well on in-domain test data could struggle on OOD data. Overcoming this discrepancy is essential to the reliable deployment of DL. Proper model calibration decreases the number of spurious connections that aremade between model features and class outputs. Hence, calibrated DL can improve OOD generalization by only learning features that are truly indicative of the respective classes. Previous work proposed domain-aware model calibration (DOMINO) to improve DL calibration, but it lacks designs formodel generalizability to OOD data. In this work, we propose DOMINO++, a dual-guidance and dynamic domain-aware loss regularization focused on OOD generalizability. DOMINO++ integrates expert-guided and data-guided knowledge in its regularization. Unlike DOMINO which imposed a fixed scaling and regularization rate, DOMINO++ designs a dynamic scaling factor and an adaptive regularization rate. Comprehensive evaluations compare DOMINO++ with DOMINO and the baseline model for head tissue segmentation from magnetic resonance images (MRIs) on OOD data. The OOD data consists of synthetic noisy and rotated datasets, as well as real data using a different MRI scanner from a separate site. DOMINO++'s superior performance demonstrates its potential to improve the trustworthy deployment of DL on real clinical data.
引用
收藏
页码:713 / 723
页数:11
相关论文
共 6 条
  • [1] DOMINO: Domain-aware loss for deep learning calibration
    Stolte, Skylar E.
    Volle, Kyle
    Indahlastari, Aprinda
    Albizu, Alejandro
    Woods, Adam J.
    Brink, Kevin
    Hale, Matthew
    Fang, Ruogu
    SOFTWARE IMPACTS, 2023, 15
  • [2] DOMINO: Domain-Aware Model Calibration in Medical Image Segmentation
    Stolte, Skylar E.
    Volle, Kyle
    Indahlastari, Aprinda
    Albizu, Alejandro
    Woods, Adam J.
    Brink, Kevin
    Hale, Matthew
    Fang, Ruogu
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 454 - 463
  • [3] AIR-UNet plus plus : a deep learning framework for histopathology image segmentation and detection
    Kanadath, Anusree
    Jothi, J. Angel Arul
    Urolagin, Siddhaling
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (19) : 57449 - 57475
  • [4] Ariadne plus : Deep Learning--Based Augmented Framework for the Instance Segmentation of Wires
    Caporali, Alessio
    Zanella, Riccardo
    De Greogrio, Daniele
    Palli, Gianluca
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (12) : 8607 - 8617
  • [5] Deep-learning-based workflow for boundary and small target segmentation in digital rock images using UNet plus plus and IK-EBM
    Wang, Hongsheng
    Dalton, Laura
    Fan, Ming
    Guo, Ruichang
    McClure, James
    Crandall, Dustin
    Chen, Cheng
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 215
  • [6] Deep Learning-Based Total Kidney Volume Segmentation in Autosomal Dominant Polycystic Kidney Disease Using Attention, Cosine Loss, and Sharpness Aware Minimization
    Raj, Anish
    Tollens, Fabian
    Hansen, Laura
    Golla, Alena-Kathrin
    Schad, Lothar R.
    Noerenberg, Dominik
    Zoellner, Frank G.
    DIAGNOSTICS, 2022, 12 (05)