CROSSED HOMOMORPHISMS AND LOW DIMENSIONAL REPRESENTATIONS OF MAPPING CLASS GROUPS OF SURFACES

被引:0
作者
Kasahara, Yasushi [1 ]
机构
[1] Kochi Univ Technol, Dept Math, Kami, Kochi 7828502, Japan
关键词
SUBGROUPS;
D O I
10.1090/tran/9037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of low dimensional linear representations of mapping class groups of surfaces initiated by Franks-Handel [Proc. Amer. Math. So. 141 (2013), pp. 2951-2962] and Korkmaz [Low-dimensional linear representations of mapping class groups, preprint, arXiv:1104.4816v2 (2011)]. We consider (2g + 1)-dimensional complex linear representations of the pure mapping class groups of compact orientable surfaces of genus g. We give a complete classification of such representations for g > 7 up to conjugation, in terms of certain twisted 1-cohomology groups of the mapping class groups. A new ingredient is to use the computation of a related twisted 1-cohomology group by Morita [Ann. Inst. Fourier (Grenoble) 39 (1989), pp. 777-810]. The classification result implies in particular that there are no irreducible linear representations of dimension 2g + 1 for g >= 7, which marks a contrast with the case g = 2.
引用
收藏
页码:1183 / 1218
页数:36
相关论文
共 20 条
[1]  
Aramayona J, 2016, IRMA LECT MATH THEOR, V27, P131
[2]  
Birman Joan S., 1974, ANN MATH STUD, V79, P57
[3]  
Brown K., 1982, COHOMOLOGY GROUPS, V87
[4]  
Button J. O., 2016, ARXIV
[5]  
Farb B., 2012, PRINCETON MATH SERIE, V49
[6]   TRIVIALITY OF SOME REPRESENTATIONS OF MCG(Sg) IN GL(n, C), Diff(S2) AND Homeo(T2) [J].
Franks, John ;
Handel, Michael .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (09) :2951-2962
[7]  
GROSSMAN EK, 1974, J LOND MATH SOC, V9, P160
[8]  
Hain R., 1995, Current topics in complex algebraic geometry, P97
[9]   HECKE ALGEBRA REPRESENTATIONS OF BRAID-GROUPS AND LINK POLYNOMIALS [J].
JONES, VFR .
ANNALS OF MATHEMATICS, 1987, 126 (02) :335-388
[10]  
Kasahara Yasushi, 2001, ALGEBR GEOM TOPOL, V1, P39