Microwave catalytic co-pyrolysis of sugarcane bagasse and Chlorella vulgaris over metal modified bio-chars: Characteristics and bio-oil analysis

被引:8
|
作者
Qiu, Song [1 ]
Chen, Chunxiang [1 ,2 ,3 ]
Wan, Shouqiang [1 ]
Ling, Hongjian [1 ]
Wei, Yixue [1 ]
He, Shiyuan [1 ]
Shi, Haosen [1 ]
Mo, Xiankai [1 ]
机构
[1] Guangxi Univ, Coll Mech Engn, Univ Rd 100, Nanning 530004, Peoples R China
[2] Guangxi Key Lab Petrochem Resources Proc & Proc In, Nanning 530004, Peoples R China
[3] Guangdong Prov Key Lab Efficient & Clean Energy Ut, Guangzhou 510640, Peoples R China
来源
关键词
Sugarcane bagasse; Chlorella vulgaris; Metal modified bio-char; Microwave catalytic co-pyrolysis; Bio-oil; LOW-DENSITY POLYETHYLENE; BIOMASS; MGO; MICROALGAE; CELLULOSE; LIGNIN; GASIFICATION; PARAMETERS; CONVERSION; KINETICS;
D O I
10.1016/j.jece.2023.110917
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bio-char (BC) is a cheap, environmentally friendly and easy-to-produce material, which is widely used as pyrolysis catalyst. In this study, the modified catalysts (Fe/BC, Co/BC and Mg/BC) were prepared using BC produced by the co-pyrolysis of sugarcane bagasse and Chlorella vulgaris. The characterization of the modified catalysts showed that they had a higher surface area (SBET) and pore volume compared with BC. Besides, the influence of modified catalysts on co-pyrolysis was analyzed at different additions. Except for 10% Mg/BC, the catalysts effectively increased the average weight loss rate (Rv) and decreased the reaction time (ts) of co pyrolysis at all additions, and 40% Fe/BC addition had the highest Rv and lowest ts. The catalyst addition increased the bio-oil yield of the co-pyrolysis, and the maximum bio-oil yield (25.94%) was obtained under 40% Mg/BC addition. Moreover, the catalysts not only facilitated the formation of hydrocarbons, but also suppressed the generation of amines/nitriles and acids/esters. After adding 40% Fe/BC, the hydrocarbons content reached the highest (26.01%), while the amines/nitriles content (3.23%) and acids/esters content (4.66%) reached the lowest. The results provided theoretical support for improving microwave pyrolysis characteristics and bio-oil quality using modified BC catalysts.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Catalytic co-pyrolysis of Vachellia Farnesiana with polypropylene plastic to produce bio-oil: Parameter optimization study
    Ahmad, Nabeel
    Imtiaz, Mujtaba
    Hussain, Murid
    Amjad, Um-e-Salma
    Maafa, Ibrahim M.
    Ahmed, Usama
    Jameel, Abdul Gani Abdul
    Bafaqeer, Abdullah
    FUEL, 2024, 367
  • [42] Catalytic co-pyrolysis of food waste digestate and corn husk with CaO catalyst for upgrading bio-oil
    Chen, Minzi
    Zhang, Shuping
    Su, Yinhai
    Niu, Xin
    Zhu, Shuguang
    Liu, Xinzhi
    RENEWABLE ENERGY, 2022, 186 : 105 - 114
  • [43] Ex-situ catalytic microwave pyrolysis of lignin over Co/ZSM-5 to upgrade bio-oil
    Xie, Wei
    Liang, Jianghui
    Morgan, Hervan Marion, Jr.
    Zhang, Xiaodong
    Wang, Kui
    Mao, Hanping
    Bu, Quan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 132 : 163 - 170
  • [44] Techno-economic analysis of sawdust and rice husk co-pyrolysis for bio-oil production
    Fadhilah, Nur Amal
    Islam, Mohammad Nurul
    Rosli, Roslynna
    BIORESOURCE TECHNOLOGY REPORTS, 2023, 21
  • [45] Microwave-assisted catalytic co-pyrolysis of soybean straw and soapstock for bio-oil production using SiC ceramic foam catalyst
    Wang, Yunpu
    Jiang, Lin
    Dai, Leilei
    Yu, Zhenting
    Liu, Yuhuan
    Ruan, Roger
    Fu, Guiming
    Zhou, Yue
    Fan, Liangliang
    Duan, Dengle
    Zhao, Yunfeng
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 133 : 76 - 81
  • [46] Bio-oil production via catalytic microwave co-pyrolysis of lignin and low density polyethylene using zinc modified lignin-based char as a catalyst
    Morgan, Hervan Marion, Jr.
    Liang, Jianghui
    Chen, Kun
    Yan, Lishi
    Wang, Kui
    Mao, Hanping
    Bu, Quan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 133 : 107 - 116
  • [48] Catalytic co-pyrolysis of solid wastes (low-density polyethylene and lignocellulosic biomass) over microwave assisted biochar for bio-oil upgrading and hydrogen production
    Zou, Rongge
    Wang, Chenxi
    Qian, Moriko
    Huo, Erguang
    Kong, Xiao
    Wang, Yunpu
    Dai, Leilei
    Wang, Lu
    Zhang, Xuesong
    Mateo, Wendy C.
    Ruan, Roger
    Lei, Hanwu
    JOURNAL OF CLEANER PRODUCTION, 2022, 374
  • [49] Characterization and product analysis of Chlorella vulgaris microalgae and oil seed biomass waste by microwave co-pyrolysis
    Chen, Chunxiang
    He, Shiyuan
    Qiu, Song
    Wan, Shouqiang
    Ling, Hongjian
    Wei, Yixue
    JOURNAL OF THE ENERGY INSTITUTE, 2023, 111
  • [50] A minireview on catalytic fast co-pyrolysis of lignocellulosic biomass for bio-oil upgrading via enhancing monocyclic aromatics
    Zhong, Siying
    Zhang, Bo
    Liu, Chenhao
    Shujaa, Awsan
    Mwenya, Stephen
    Zhang, Huiyan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 164