Tetrabutylammonium bromide/triethanolamine deep eutectic solvents with double hydrogen bond as efficient catalysts for fixation of CO2 in cyclic carbonates under mild conditions

被引:3
|
作者
Yang, Hansen [2 ]
Wang, Zhimiao [2 ,3 ]
Yang, Qiusheng [1 ,2 ,3 ,4 ]
Li, Fang [2 ,3 ]
Xue, Wei [1 ,2 ,3 ]
Zhao, Xinqiang [2 ,3 ]
Wang, Yanji [2 ,3 ,4 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, Hebei Prov Key Lab Green Chem Technol & High Effic, Tianjin 300130, Peoples R China
[2] Hebei Univ Technol, Sch Chem Engn & Technol, Hebei Prov Key Lab Green Chem Technol & High Effic, Tianjin, Peoples R China
[3] Tianjin Key Lab Chem Proc Safety, Tianjin, Peoples R China
[4] Hebei Ind Technol Res Inst Green Chem Ind, Huanghua, Peoples R China
基金
中国国家自然科学基金;
关键词
deep eutectic solvent; CO2; cyclic carbonate; cycloaddition reaction; DFT; IONIC LIQUIDS; CHEMICAL FIXATION; OXIDATIVE CARBOXYLATION; ATMOSPHERIC-PRESSURE; DIOXIDE; CONVERSION; SEPARATION; OLEFINS; DESS;
D O I
10.1002/jctb.7508
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BACKGROUND: Carbon dioxide is not only a major greenhouse gas but also an important carbon resource, which is abundant, renewable, low cost and non-toxic. The coupling reaction of CO2 with epoxides has shown great potential in the field of chemical carbon fixation due to its 100% atomic utilization efficiency. Deep eutectic solvents (DESs) based on tetrabutylammonium bromide (TBAB) were evaluated for cycloaddition reaction of CO2 with propylene oxide (PO) to propylene carbonate (PC). Density functional theory (DFT) was used to calculate the catalytic performance of DES in CO2 cycloaddition reaction. RESULTS: The utilization of DES containing triethanolamine (TEA) as hydrogen bond donor significantly shortened the reaction time. Under optimal reaction conditions (30 mmol PO, 5 mol% TBAB/TEA (1:1) DES, 1.0 MPa CO2, 90 degrees C, 2 h), high PC yield (98%) was obtained. DFT calculations revealed that TBAB/TEA (1:1) DES was used as the catalyst for the coupling reaction between PO and CO2, with the ring-opening process serving as the rate-determining step and energy barrier of 17.9 kcal mol(-1). TBAB/TEA (1:1) DES exhibited excellent recyclability and could be reused more than five times. CONCLUSION: TBAB/TEA (1:1) DES is a highly efficient homogeneous catalyst for the synthesis of cyclic carbonates through the cycloaddition reaction of CO2 and epoxides. The synergistic catalytic effect of the double hydrogen bonds between DES and Br anions is the reason for its high efficiency. (c) 2023 Society of Chemical Industry.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 50 条
  • [1] Efficient Fixation of CO2 to Cyclic Carbonates Under Mild Conditions Catalyzed by Deep Eutectic Solvent
    Zehua Qian
    Xueyu Shang
    Wenjun Wang
    Dejin Zhang
    Shu Sun
    Catalysis Letters, 2024, 154 : 1201 - 1208
  • [2] Efficient Fixation of CO2 to Cyclic Carbonates Under Mild Conditions Catalyzed by Deep Eutectic Solvent
    Qian, Zehua
    Shang, Xueyu
    Wang, Wenjun
    Zhang, Dejin
    Sun, Shu
    CATALYSIS LETTERS, 2024, 154 (03) : 1201 - 1208
  • [3] Study of Superbase-Based Deep Eutectic Solvents as the Catalyst in the Chemical Fixation of CO2 into Cyclic Carbonates under Mild Conditions
    Garcia-Arguelles, Sara
    Luisa Ferrer, Maria
    Iglesias, Marta
    Del Monte, Francisco
    Concepcion Gutierrez, Maria
    MATERIALS, 2017, 10 (07)
  • [4] Deep Eutectic Solvents as Efficient Catalysts for Fixation of CO2 to Cyclic Carbonates at Ambient Temperature and Pressure through Synergetic Catalysis
    Yang, Xiaoqing
    Zou, Qizhuang
    Zhao, Tianxiang
    Chen, Peng
    Liu, Zimin
    Liu, Fei
    Lin, Qian
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (31) : 10437 - 10443
  • [5] Metal β-diketonate complexes as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates under mild conditions
    Wang, Hongmei
    Zhang, Zulei
    Wang, Hailong
    Guo, Liping
    Li, Lei
    DALTON TRANSACTIONS, 2019, 48 (42) : 15970 - 15976
  • [6] Deep Eutectic Solvents as Catalysts for Cyclic Carbonates Synthesis from CO2 and Epoxides
    Manka, Dorota
    Siewniak, Agnieszka
    MOLECULES, 2022, 27 (24):
  • [7] Tunable and functional phosphonium-based deep eutectic solvents for synthesizing of cyclic carbonates from CO2 and epoxides under mild conditions
    Cui, Yuanyuan
    Wang, Xiaokang
    Dong, Li
    Liu, Yifan
    Chen, Songsong
    Zhang, Junping
    Zhang, Xiangping
    JOURNAL OF CO2 UTILIZATION, 2023, 70
  • [8] Efficient fixation of CO2 into cyclic carbonate catalyzed by choline bromide/imidazole derivatives-based deep eutectic solvents
    Sheng, Tian
    Ou, Jialong
    Zhao, Tianxiang
    Yang, Xiaoqing
    Peng, Yu-Xin
    MOLECULAR CATALYSIS, 2023, 536
  • [9] Cooperative multifunctional nanocarbon as efficient electro-catalysts for CO2 fixation to value-added cyclic carbonates under mild conditions
    Dai, Xueya
    Qi, Ke
    Liu, Chuangwei
    Lu, Xingyu
    Qi, Wei
    CARBON, 2023, 202 : 51 - 58
  • [10] Co(III)-Salen immobilized cellulose nanocrystals for efficient catalytic CO2 fixation into cyclic carbonates under mild conditions
    Hu, Lingling
    Xie, Qiujian
    Tang, Juntao
    Pan, Chunyue
    Yu, Guipeng
    Tam, Kam Chiu
    CARBOHYDRATE POLYMERS, 2021, 256