On the Monotony of Bessel Functions of the First Kind

被引:1
作者
Cotirla, Luminita-Ioana [1 ]
Szasz, Robert [2 ]
机构
[1] Tech Univ, Dept Math, Cluj Napoca, Romania
[2] Sapientia Hungarian Univ Transylvania, Dept Math & Informat, Targu Mures, Romania
关键词
Bessel function; Convex function; Subordination;
D O I
10.1007/s40315-023-00498-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let J(p) denote the Bessel function of the first kind. In Baricz and Andras (Complex Var. Elliptic Equ. 54(7):689-696, 2009) the authors deduced a kind of monotony for a normalized form of the Bessel function J(p). They proved using integral representations that the inequalities -1/4 < q < p imply J(p)(U) subset of J(q)(U), (1) where J(p) is a normalized form of J(p). In Baricz and Andras (2009) it is conjectured that the weaker condition-1 < q < p implies the inclusion (1) too. This paper shows that an approach based on subordination factor sequences leads to the desired result.
引用
收藏
页码:747 / 752
页数:6
相关论文
共 50 条