On the Monotony of Bessel Functions of the First Kind

被引:1
作者
Cotirla, Luminita-Ioana [1 ]
Szasz, Robert [2 ]
机构
[1] Tech Univ, Dept Math, Cluj Napoca, Romania
[2] Sapientia Hungarian Univ Transylvania, Dept Math & Informat, Targu Mures, Romania
关键词
Bessel function; Convex function; Subordination;
D O I
10.1007/s40315-023-00498-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let J(p) denote the Bessel function of the first kind. In Baricz and Andras (Complex Var. Elliptic Equ. 54(7):689-696, 2009) the authors deduced a kind of monotony for a normalized form of the Bessel function J(p). They proved using integral representations that the inequalities -1/4 < q < p imply J(p)(U) subset of J(q)(U), (1) where J(p) is a normalized form of J(p). In Baricz and Andras (2009) it is conjectured that the weaker condition-1 < q < p implies the inclusion (1) too. This paper shows that an approach based on subordination factor sequences leads to the desired result.
引用
收藏
页码:747 / 752
页数:6
相关论文
共 50 条
  • [31] APPROXIMATE LINEAR RELATIONS FOR BESSEL FUNCTIONS
    Pang, Gang
    Tang, Shaoqiang
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (07) : 1967 - 1986
  • [32] Geometric Properties of Generalized Bessel Functions
    Mondal, Saiful R.
    Swaminathan, A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (01) : 179 - 194
  • [33] The radius of convexity of normalized Bessel functionsРадиус выпуклости нормализованных функций Бесселя
    Árpád Baricz
    Róbert Szász
    Analysis Mathematica, 2015, 41 : 141 - 151
  • [34] On higher derivatives of the Bessel and related functions
    Brychkov, Yu A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (08) : 607 - 612
  • [35] COMPLETENESS AND MINIMALITY OF SYSTEMS OF BESSEL FUNCTIONS
    Vynnyts'kyi, B. V.
    Khats, R. V.
    UFA MATHEMATICAL JOURNAL, 2013, 5 (02): : 131 - 141
  • [36] ON ZEROS OF THE COMBINATION OF PRODUCTS OF BESSEL FUNCTIONS
    Gimaltdinova, A. A.
    Anosova, E. P.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2019, (60): : 5 - 10
  • [37] Unification of Bessel functions of different orders
    Mekhfi, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (04) : 1163 - 1169
  • [38] Bessel G-functions. I
    Turbin A.F.
    Plotkin Ya.D.
    Ukrainian Mathematical Journal, 2001, 53 (12) : 2056 - 2071
  • [39] Some Inequalities for Modified Bessel Functions
    Andrea Laforgia
    Pierpaolo Natalini
    Journal of Inequalities and Applications, 2010
  • [40] New Results about Radius of Convexity and Uniform Convexity of Bessel Functions
    Cotirla, Luminita-Ioana
    Kupan, Pal Aurel
    Szasz, Robert
    AXIOMS, 2022, 11 (08)