On the Monotony of Bessel Functions of the First Kind

被引:1
作者
Cotirla, Luminita-Ioana [1 ]
Szasz, Robert [2 ]
机构
[1] Tech Univ, Dept Math, Cluj Napoca, Romania
[2] Sapientia Hungarian Univ Transylvania, Dept Math & Informat, Targu Mures, Romania
关键词
Bessel function; Convex function; Subordination;
D O I
10.1007/s40315-023-00498-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let J(p) denote the Bessel function of the first kind. In Baricz and Andras (Complex Var. Elliptic Equ. 54(7):689-696, 2009) the authors deduced a kind of monotony for a normalized form of the Bessel function J(p). They proved using integral representations that the inequalities -1/4 < q < p imply J(p)(U) subset of J(q)(U), (1) where J(p) is a normalized form of J(p). In Baricz and Andras (2009) it is conjectured that the weaker condition-1 < q < p implies the inclusion (1) too. This paper shows that an approach based on subordination factor sequences leads to the desired result.
引用
收藏
页码:747 / 752
页数:6
相关论文
共 50 条
  • [1] The monotony of the q-Bessel functions
    Ozkan, Yucel
    Korkmaz, Semra
    Deniz, Erhan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (01)
  • [2] ZEROS' DISTRIBUTION OF THE FIRST KIND BESSEL FUNCTIONS
    Hsu, Cheng-Hsiung
    Yang, Chi-Ru
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2016, 8 (03): : 377 - 384
  • [3] About the radius of starlikeness of Bessel functions of the first kind
    Szasz, Robert
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (02): : 323 - 330
  • [4] LOWER AND UPPER BOUNDS FOR BESSEL FUNCTIONS OF THE FIRST KIND
    Reif, Ulrich
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2024, 15 (02) : 1 - 6
  • [5] About the radius of starlikeness of Bessel functions of the first kind
    Róbert Szász
    Monatshefte für Mathematik, 2015, 176 : 323 - 330
  • [6] Characterizing q-Bessel Functions of the First Kind with Their New Summation and Integral Representations
    Fadel, Mohammed
    Raza, Nusrat
    Du, Wei-Shih
    MATHEMATICS, 2023, 11 (18)
  • [7] The Monotony of the Lommel Functions
    Cotirla, Luminita-Ioana
    Szasz, Robert
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [8] On The Monotony of Struve Functions
    Deniz, Erhan
    Szasz, Robert
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (05)
  • [9] The Monotony of the Lommel Functions
    Luminiţa-Ioana Cotîrlă
    Róbert Szász
    Results in Mathematics, 2023, 78
  • [10] Certain geometric properties of the fractional integral of the Bessel function of the first kind
    Oros, Georgia Irina
    Oros, Gheorghe
    Bardac-Vlada, Daniela Andrada
    AIMS MATHEMATICS, 2024, 9 (03): : 7095 - 7110