On the Monotony of Bessel Functions of the First Kind

被引:1
|
作者
Cotirla, Luminita-Ioana [1 ]
Szasz, Robert [2 ]
机构
[1] Tech Univ, Dept Math, Cluj Napoca, Romania
[2] Sapientia Hungarian Univ Transylvania, Dept Math & Informat, Targu Mures, Romania
关键词
Bessel function; Convex function; Subordination;
D O I
10.1007/s40315-023-00498-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let J(p) denote the Bessel function of the first kind. In Baricz and Andras (Complex Var. Elliptic Equ. 54(7):689-696, 2009) the authors deduced a kind of monotony for a normalized form of the Bessel function J(p). They proved using integral representations that the inequalities -1/4 < q < p imply J(p)(U) subset of J(q)(U), (1) where J(p) is a normalized form of J(p). In Baricz and Andras (2009) it is conjectured that the weaker condition-1 < q < p implies the inclusion (1) too. This paper shows that an approach based on subordination factor sequences leads to the desired result.
引用
收藏
页码:747 / 752
页数:6
相关论文
共 50 条
  • [1] Powers of modified Bessel functions of the first kind
    Baricz, Arpad
    APPLIED MATHEMATICS LETTERS, 2010, 23 (06) : 722 - 724
  • [2] ZEROS' DISTRIBUTION OF THE FIRST KIND BESSEL FUNCTIONS
    Hsu, Cheng-Hsiung
    Yang, Chi-Ru
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2016, 8 (03): : 377 - 384
  • [3] The monotony of the q-Bessel functions
    Ozkan, Yucel
    Korkmaz, Semra
    Deniz, Erhan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (01)
  • [4] Functional inequalities involving Bessel and modified Bessel functions of the first kind
    Baricz, Arpad
    EXPOSITIONES MATHEMATICAE, 2008, 26 (03) : 279 - 293
  • [5] (p, q)-Extended Bessel and Modified Bessel Functions of the First Kind
    Dragana Jankov Maširević
    Rakesh K. Parmar
    Tibor K. Pogány
    Results in Mathematics, 2017, 72 : 617 - 632
  • [6] Redheffer type bounds for Bessel and modified Bessel functions of the first kind
    Árpád Baricz
    Khaled Mehrez
    Aequationes mathematicae, 2018, 92 : 425 - 439
  • [7] Redheffer type bounds for Bessel and modified Bessel functions of the first kind
    Baricz, Arpad
    Mehrez, Khaled
    AEQUATIONES MATHEMATICAE, 2018, 92 (03) : 425 - 439
  • [8] (p, q)-Extended Bessel and Modified Bessel Functions of the First Kind
    Masirevic, Dragana Jankov
    Parmar, Rakesh K.
    Pogany, Tibor K.
    RESULTS IN MATHEMATICS, 2017, 72 (1-2) : 617 - 632
  • [9] THE RADIUS OF STARLIKENESS OF NORMALIZED BESSEL FUNCTIONS OF THE FIRST KIND
    Baricz, Arpad
    Kupan, Pal Aurel
    Szasz, Robert
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (06) : 2019 - 2025
  • [10] About the radius of starlikeness of Bessel functions of the first kind
    Szasz, Robert
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (02): : 323 - 330