Establishing Physical and Chemical Mechanisms of Polymerization and Pyrolysis of Phenolic Resins for Carbon-Carbon Composites

被引:19
作者
Gallegos, Ivan [1 ]
Kemppainen, Josh [1 ]
Gissinger, Jacob R. [2 ]
Kowalik, Malgorzata [3 ]
van Duin, Adri [3 ]
Wise, Kristopher E. [2 ]
Gowtham, S. [1 ]
Odegard, Gregory M. [1 ]
机构
[1] Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA
[2] NASA, Langley Res Ctr, 1 Nasa Dr, Hampton, VA USA
[3] Penn State Univ, State Coll, PA USA
来源
CARBON TRENDS | 2023年 / 12卷
关键词
Molecular dynamics; Pyrolysis; Phenolic; Reactive; Composites; REACTIVE FORCE-FIELD; THIN AMORPHOUS-CARBON; MOLECULAR-DYNAMICS; VITREOUS CARBON; REAXFF; SIMULATIONS; OXIDATION; BEHAVIOR; DFTB;
D O I
10.1016/j.cartre.2023.100290
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The complex structural and chemical changes that occur during polymerization and pyrolysis critically affect material properties but are difficult to characterize in situ. This work presents a novel, experimentally validated methodology for modeling the complete polymerization and pyrolysis processes for phenolic resin using reactive molecular dynamics. The polymerization simulations produced polymerized structures with mass densities of 1.24 & PLUSMN; 0.01 g/cm3 and Young's moduli of 3.50 & PLUSMN; 0.64 GPa, which are in good agreement with experimental values. The structural properties of the subsequently pyrolyzed structures were also found to be in good agreement with experimental X-ray data for the phenolic-derived carbon matrices, with interplanar spacings of 3.81 & PLUSMN; 0.06 & ANGS; and crystallite heights of 10.94 & PLUSMN; 0.37 & ANGS;. The mass densities of the pyrolyzed models, 2.01 & PLUSMN; 0.03 g/cm3, correspond to skeletal density values, where the volume of pores is excluded in density calculations for the phenolic resin-based pyrolyzed samples. Young's moduli are underpredicted at 122.36 & PLUSMN; 16.48 GPa relative to experimental values of 146 - 256 GPa for nanoscale amorphous carbon samples.
引用
收藏
页数:14
相关论文
共 66 条
[1]   Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques [J].
Aktulga, H. M. ;
Fogarty, J. C. ;
Pandit, S. A. ;
Grama, A. Y. .
PARALLEL COMPUTING, 2012, 38 (4-5) :245-259
[2]  
Ashby, 2012, MAT ENV ECOINFORMED
[3]  
Ashby Michael F., 2012, Materials and the environment: ecoinformed material choice, DOI DOI 10.1016/C2010-0-66554-0
[4]   Extension of the ReaxFF Combustion Force Field toward Syngas Combustion and Initial Oxidation Kinetics [J].
Ashraf, Chowdhury ;
van Duin, Adri C. T. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (05) :1051-1068
[5]   Comparison of ReaxFF, DFTB, and DFT for Phenolic Pyrolysis. 2. Elementary Reaction Paths [J].
Bauschlicher, Charles W., Jr. ;
Qi, Tingting ;
Reed, Evan J. ;
Lenfant, Antonin ;
Lawson, John W. ;
Desai, Tapan G. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (44) :11126-11135
[6]  
Burket C L., 2007, Genesis and Evolution of Porosity and Microstructure in Nanoporous Carbon Derived from Polyfurfuryl Alcohol
[7]  
Chekanova V.D., 1971, Russ. Chem. Rev, V40, P413, DOI DOI 10.1070/RC1971V040N05ABEH001927
[8]   ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J].
Chenoweth, Kimberly ;
van Duin, Adri C. T. ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05) :1040-1053
[9]   Virtual diffraction analysis of Ni [010] symmetric tilt grain boundaries [J].
Coleman, S. P. ;
Spearot, D. E. ;
Capolungo, L. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (05)
[10]  
Cowie J. M. G., 2007, Polymers: Chemistry and Physics of Modern Materials, VThird