Urban carbon stock estimation based on deep learning and UAV remote sensing: a case study in Southern China

被引:2
|
作者
Wu, Zijian [1 ]
Jiang, Mingfeng [2 ]
Li, Huaizhong [1 ]
Shen, Yang [1 ]
Song, Junfeng [1 ]
Zhong, Xuyang [3 ]
Ye, Zhen [1 ,4 ]
机构
[1] Lishui Univ, Sch Math & Comp Sci, Lishui, Peoples R China
[2] Zhejiang Sci Tech Univ, Sch Comp Sci & Technol, Hangzhou, Peoples R China
[3] Lishui Univ, Sch Engn, Dept Civil Engn, Lishui, Peoples R China
[4] Lishui Univ, Sch Engn, Dept Comp, Lishui 323000, Peoples R China
来源
ALL EARTH | 2023年 / 35卷 / 01期
关键词
biomass; carbon stock; deep learning; remote sensing; urban studies; ESTIMATING ABOVEGROUND BIOMASS; ALLOMETRIC EQUATIONS; CLIMATE-CHANGE; FORESTS; SEQUESTRATION; MODELS; RISK;
D O I
10.1080/27669645.2023.2249645
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate carbon (C) stock estimation is crucial for C sequestration research, environmental protection, and policy formulation related to C management. Although research on C stock in forests, oceans, soil, and desert has received increasing attention, relatively few studies have focused on urban C stock. Moreover, the current mainstream methods for C stock assessment, including field surveys and satellite mapping, are characterised by notable limitations, including being labour-intensive and having limited real-time data acquisition capabilities. Therefore, this paper aims to assess urban C stock and proposes a novel two-stage estimation model based on deep learning and unmanned aerial vehicle (UAV) remote sensing. The first stage is that tree areas recognition via YOLOv5 and achieved 0.792 precision, 0.814 recall, and 0.805 mAP scores, respectively. In the second stage, a grid generation strategy and a Convolutional Neural Network (CNN) regression model were developed to estimate C stock based on recognised tree areas (R2 = 0.711, RMSE = 26.08 kg). Three regions with a minimum of 300 trees in each area were selected as validation sets. The experimental results, in terms of R2 and RMSE in kg, were (0.717, 0.711, 0.686) and (27.263, 27.857, 28.945), respectively.
引用
收藏
页码:272 / 286
页数:15
相关论文
共 50 条
  • [31] TRANSFER DEEP LEARNING FOR REMOTE SENSING DATASETS: A COMPARISON STUDY
    Hernandez-Sequeira, Itza
    Fernandez-Beltran, Ruben
    Pla, Filiberto
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3207 - 3210
  • [32] MACHINE LEARNING FOR MAPPING SPATIAL DISTRIBUTION OF THICKNESS AND CARBON STOCK OF TROPICAL PEATLAND BASED ON REMOTE SENSING DATA: A CASE STUDY IN LAKE SENTARUM NATIONAL PARK, INDONESIA
    Musthofa, Faizal
    Widyatmanti, Wirastuti
    Arjasakusuma, Sanjiwana
    Umarhadi, Deha A.
    Putri, Demetria A.
    Raharja, Fahrudin F.
    Arrasyid, M. K.
    GEOGRAPHIA TECHNICA, 2022, 17 (01): : 46 - 57
  • [33] Water quality monitoring and assessment based on cruise monitoring, remote sensing, and deep learning: A case study of Qingcaosha Reservoir
    Qian, Jing
    Liu, Hongbo
    Qian, Li
    Bauer, Jonas
    Xue, Xiaobai
    Yu, Gongliang
    He, Qiang
    Zhou, Qi
    Bi, Yonghong
    Norra, Stefan
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [34] Extraction of Sunflower Lodging Information Based on UAV Multi-Spectral Remote Sensing and Deep Learning
    Li, Guang
    Han, Wenting
    Huang, Shenjin
    Ma, Weitong
    Ma, Qian
    Cui, Xin
    REMOTE SENSING, 2021, 13 (14)
  • [35] Detection and Location of Dead Trees with Pine Wilt Disease Based on Deep Learning and UAV Remote Sensing
    Deng, Xiaoling
    Tong, Zejing
    Lan, Yubin
    Huang, Zixiao
    AGRIENGINEERING, 2020, 2 (02): : 294 - 307
  • [36] Evaluating UAV-Based Remote Sensing for Hay Yield Estimation
    Lee, Kyuho
    Sudduth, Kenneth A.
    Zhou, Jianfeng
    SENSORS, 2024, 24 (16)
  • [37] Stock market prediction with deep learning: The case of China
    Liu, Qingfu
    Tao, Zhenyi
    Tse, Yiuman
    Wang, Chuanjie
    FINANCE RESEARCH LETTERS, 2022, 46
  • [38] Hyperparameter Optimization for Large-Scale Remote Sensing Image Analysis Tasks: A Case Study Based on Permafrost Landform Detection Using Deep Learning
    Perera, Amal S.
    Witharana, Chandi
    Manos, Elias
    Liljedahl, Anna K.
    IEEE ACCESS, 2024, 12 : 43062 - 43077
  • [39] Moisture content estimation and senescence phenotyping of novel Miscanthus hybrids combining UAV-based remote sensing and machine learning
    Impollonia, Giorgio
    Croci, Michele
    Martani, Enrico
    Ferrarini, Andrea
    Kam, Jason
    Trindade, Luisa M.
    Clifton-Brown, John
    Amaducci, Stefano
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2022, 14 (06): : 639 - 656
  • [40] A Deep Learning Framework Approach for Urban Area Classification Using Remote Sensing Data
    Nijhawan, Rahul
    Jindal, Radhika
    Sharma, Himanshu
    Raman, Balasubramanian
    Das, Josodhir
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2018, VOL 1, 2020, 1022 : 449 - 456