Bifurcation of Piecewise Smooth Manifolds from 3D Center-Type Vector Fields

被引:1
|
作者
Buzzi, Claudio A. [1 ]
Euzebio, Rodrigo D. [2 ]
Mereu, Ana C. [3 ]
机构
[1] UNESP IBILCE, Dept Matemat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] IME UFG, Dept Matemat, R Jacaranda,Campus Samambaia, BR-74001970 Goiania, Go, Brazil
[3] Univ Fed Sao Carlos, Dept Fis Quim & Matemat, BR-18052780 Sorocaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Invariant manifolds; Piecewise smooth differential systems; Periodic orbits; Averaging theory; LIMIT-CYCLES;
D O I
10.1007/s12346-023-00853-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to study the existence of two dimensional piecewise smooth invariant manifolds under small piecewise smooth perturbations from 3D center-type vector fields. The obtained piecewise smooth manifolds, filled up by periodic orbits, are rotations of some planar algebraic curves.
引用
收藏
页数:15
相关论文
共 14 条
  • [1] Bifurcation of Piecewise Smooth Manifolds from 3D Center-Type Vector Fields
    Claudio A. Buzzi
    Rodrigo D. Euzébio
    Ana C. Mereu
    Qualitative Theory of Dynamical Systems, 2023, 22
  • [2] Birth of limit cycles from a 3D triangular center of a piecewise smooth vector field
    Carvalho, Tiago
    Euzebio, Rodrigo D.
    Teixeira, Marco Antonto
    Tonon, Durval Jose
    IMA JOURNAL OF APPLIED MATHEMATICS, 2017, 82 (03) : 561 - 578
  • [3] Fold bifurcation of T-singularities and invariant manifolds in 3D piecewise-smooth dynamical systems
    Cristiano, Rony
    Pagano, Daniel J.
    Tonon, Durval J.
    Carvalho, Tiago
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 403
  • [4] BIRTH OF AN ARBITRARY NUMBER OF T-SINGULARITIES IN 3D PIECEWISE SMOOTH VECTOR FIELDS
    de Carvalho, Tiago
    Freitas, Bruno
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (09): : 4851 - 4861
  • [5] Limit cycles of generic piecewise center-type vector fields in R3 separated by either one plane or by two parallel planes
    Villanueva, Yovani
    Llibre, Jaume
    Euzebio, Rodrigo
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 179
  • [6] Birth of Isolated Nested Cylinders and Limit Cycles in 3D Piecewise Smooth Vector Fields with Symmetry
    Carvalho, Tiago
    de Freitas, Bruno Rodrigues
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (07):
  • [7] The focus-center-limit cycle bifurcation in symmetric 3D piecewise linear systems
    Freire, E
    Ponce, E
    Ros, J
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (06) : 1933 - 1951
  • [8] The Application of Lagrangian Descriptors to 3D Vector Fields
    Garcia-Garrido, Victor J.
    Curbelo, Jezabel
    Mancho, Ana M.
    Wiggins, Stephen
    Mechoso, Carlos R.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (05): : 551 - 568
  • [9] Saddle-node bifurcation of invariant cones in 3D piecewise linear systems
    Carmona, Victoriano
    Fernandez-Garcia, Soledad
    Freire, Emilio
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (05) : 623 - 635
  • [10] Bifurcations from a center at infinity in 3D piecewise linear systems with two zones
    Freire, Emilio
    Ordonez, Manuel
    Ponce, Enrique
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 402