Scaling of nanoscale elastic and tensile failure properties of cementitious calcium-silicate-hydrate materials at cryogenic temperatures: A molecular simulation study

被引:20
作者
Zhu, Xinping [1 ,2 ]
Brochard, Laurent [2 ]
Vandamme, Matthieu [2 ]
Jiang, Zhengwu [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai 201804, Peoples R China
[2] Univ Gustave Eiffel, Ecole Ponts ParisTech, Lab Navier, CNRS, Marne La Vallee, France
基金
中国国家自然科学基金;
关键词
Calcium-silicate-hydrate; Strength; Young 's modulus; Fracture energy; Scaling law; C-S-H; STRAIN-RATE; FRACTURE-TOUGHNESS; STRENGTH; CONCRETE; PASTE; DYNAMICS; ALUMINUM; MODEL; LAWS;
D O I
10.1016/j.cemconres.2023.107242
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates the scaling of the nanoscopic elastic and tensile failure properties of calcium-silicatehydrate (C-S-H). We report a Zhurkov-like scaling behavior for disordered C-S-H of various compositions at cryogenic temperatures, using molecular dynamics simulations. To this end, we first propose a revised molecular construction route to generate C-S-H atomic configurations with varying compositions. Then, we investigate how the tensile behavior evolves with temperature, system size, and strain rate. Our simulation results show that tensile strength, Young's modulus, fracture energy, and fracture-process zone (FPZ) length, all follow a Zhurkovlike scaling law providing a general temperature-size-time equivalence. Such scaling laws make it possible to extrapolate molecular simulation results to larger length and/or time scales. Detailed analysis shows that the typical FPZ length of C-S-H is about 150 & ANGS;, and the maximum reduction of activation energy barriers for tensile failure is 0.497 and 0.446 eV for Ca/Si of 1.7 and 1.1, respectively.
引用
收藏
页数:16
相关论文
共 78 条
[1]  
Barenblatt G., 1959, APPL MATH MECH-ENGL, V23, P622, DOI DOI 10.1016/0021-8928(59)90157-1
[2]   Fracture toughness of calcium-silicate-hydrate from molecular dynamics simulations [J].
Bauchy, M. ;
Laubie, H. ;
Qomi, M. J. Abdolhosseini ;
Hoover, C. G. ;
Ulm, F. -J. ;
Pellenq, R. J. -M. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2015, 419 :58-64
[3]   Topological Control on the Structural Relaxation of Atomic Networks under Stress [J].
Bauchy, Mathieu ;
Wang, Mengyi ;
Yu, Yingtian ;
Wang, Bu ;
Krishnan, N. M. Anoop ;
Masoero, Enrico ;
Ulm, Franz-Joseph ;
Pellenq, Roland .
PHYSICAL REVIEW LETTERS, 2017, 119 (03)
[4]   Fracture toughness anomalies: Viewpoint of topological constraint theory [J].
Bauchy, Mathieu ;
Wang, Bu ;
Wang, Mengyi ;
Yu, Yingtian ;
Qomi, Mohammad Javad Abdolhosseini ;
Smedskjaer, Morten M. ;
Bichara, Christophe ;
Ulm, Franz-Josef ;
Pellenq, Roland .
ACTA MATERIALIA, 2016, 121 :234-239
[5]  
Bazant Z.P., 1998, NEW D CIV E
[6]  
BAZANT ZP, 1984, J ENG MECH-ASCE, V110, P518
[7]   Size effects and the dynamic response of plain concrete [J].
Bindiganavile, V. ;
Banthia, N. .
JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2006, 18 (04) :485-491
[8]   Scaling of brittle failure: strength versus toughness [J].
Brochard, Laurent ;
Souguir, Sabri ;
Sab, Karam .
INTERNATIONAL JOURNAL OF FRACTURE, 2018, 210 (1-2) :153-166
[9]   From yield to fracture, failure initiation captured by molecular simulation [J].
Brochard, Laurent ;
Tejada, Ignacio G. ;
Sab, Karam .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 95 :632-646
[10]   Capturing material toughness by molecular simulation: accounting for large yielding effects and limits [J].
Brochard, Laurent ;
Hantal, Gyorgy ;
Laubie, Hadrien ;
Ulm, Franz-Joseph ;
Pellenq, Roland J. M. .
INTERNATIONAL JOURNAL OF FRACTURE, 2015, 194 (02) :149-167