Generation of double knockout cattle via CRISPR-Cas9 ribonucleoprotein (RNP) electroporation

被引:14
作者
Gim, Gyeong-Min [1 ,2 ]
Eom, Kyeong-Hyeon [1 ,2 ]
Kwon, Dong-Hyeok [1 ]
Jung, Dae-Jin [3 ]
Kim, Dae-Hyun [3 ]
Yi, Jun-Koo [3 ]
Ha, Jae-Jung [3 ]
Lee, Ji-Hyun [2 ]
Lee, Seong-Beom [2 ]
Son, Woo-Jae [2 ]
Yum, Soo-Young [2 ]
Lee, Won-Wu [2 ]
Jang, Goo [1 ,2 ,4 ]
机构
[1] Seoul Natl Univ, Res Inst Vet Sci, Lab Theriogenol & Biotechnol, Dept Vet Clin Sci,Coll Vet Med, Seoul, South Korea
[2] LARTBio Co Ltd, Seoul, South Korea
[3] Gyeongsangbukdo Livestock Res Inst, Yeongju, South Korea
[4] Seoul Natl Univ, Comparat Med Dis Res Ctr, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Beta-lactoglobulin; Cattle; CRISPR-Cas9; Electroporation; Knockout; MSTN; PRNP;
D O I
10.1186/s40104-023-00902-8
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
BackgroundGenome editing has been considered as powerful tool in agricultural fields. However, genome editing progress in cattle has not been fast as in other mammal species, for some disadvantages including long gestational periods, single pregnancy, and high raising cost. Furthermore, technically demanding methods such as microinjection and somatic cell nuclear transfer (SCNT) are needed for gene editing in cattle. In this point of view, electroporation in embryos has been risen as an alternative.ResultsFirst, editing efficiency of our electroporation methods were tested for embryos. Presence of mutation on embryo was confirmed by T7E1 assay. With first combination, mutation rates for MSTN and PRNP were 57.6% & PLUSMN; 13.7% and 54.6% & PLUSMN; 13.5%, respectively. In case of MSTN/BLG, mutation rates were 83.9% & PLUSMN; 23.6% for MSTN, 84.5% & PLUSMN; 18.0% for BLG. Afterwards, the double-KO embryos were transferred to surrogates and mutation rate was identified in resultant calves by targeted deep sequencing. Thirteen recipients were transferred for MSTN/PRNP, 4 calves were delivered, and one calf underwent an induction for double KO. Ten surrogates were given double-KO embryos for MSTN/BLG, and four of the six calves that were born had mutations in both genes.ConclusionsThese data demonstrated that production of genome edited cattle via electroporation of RNP could be effectively applied. Finally, MSTN and PRNP from beef cattle and MSTN and BLG from dairy cattle have been born and they will be valuable resources for future precision breeding.
引用
收藏
页数:7
相关论文
共 50 条
[31]   The MyLO CRISPR-Cas9 toolkit: a markerless yeast localization and overexpression CRISPR-Cas9 toolkit [J].
Bean, Bjorn D. M. ;
Whiteway, Malcolm ;
Martin, Vincent J. J. .
G3-GENES GENOMES GENETICS, 2022, 12 (08)
[32]   Engineered extracellular vesicles efficiently deliver CRISPR-Cas9 ribonucleoprotein (RNP) to inhibit herpes simplex virus1 infection in vitro and in vivo [J].
Wan, Yuanda ;
Li, Liren ;
Chen, Ruilin ;
Han, Jiajia ;
Lei, Qiyun ;
Chen, Zhipeng ;
Tang, Xiaodong ;
Wu, Wenyu ;
Liu, Shuwen ;
Yao, Xingang .
ACTA PHARMACEUTICA SINICA B, 2024, 14 (03) :1362-1379
[33]   Engineering Genes with CRISPR-Cas9 [J].
Luo, Michelle L. ;
Beisel, Chase L. .
CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) :36-41
[34]   Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation [J].
Gurumurthy, Channabasavaiah B. ;
O'Brien, Aidan R. ;
Quadros, Rolen M. ;
Adams, John ;
Alcaide, Pilar ;
Ayabe, Shinya ;
Ballard, Johnathan ;
Batra, Surinder K. ;
Beauchamp, Marie-Claude ;
Becker, Kathleen A. ;
Bernas, Guillaume ;
Brough, David ;
Carrillo-Salinas, Francisco ;
Chan, Wesley ;
Chen, Hanying ;
Dawson, Ruby ;
DeMambro, Victoria ;
D'Hont, Jinke ;
Dibb, Katharine M. ;
Eudy, James D. ;
Gan, Lin ;
Gao, Jing ;
Gonzales, Amy ;
Guntur, Anyonya R. ;
Guo, Huiping ;
Harms, Donald W. ;
Harrington, Anne ;
Hentges, Kathryn E. ;
Humphreys, Neil ;
Imai, Shiho ;
Ishii, Hideshi ;
Iwama, Mizuho ;
Jonasch, Eric ;
Karolak, Michelle ;
Keavney, Bernard ;
Khin, Nay-Chi ;
Konno, Masamitsu ;
Kotani, Yuko ;
Kunihiro, Yayoi ;
Lakshmanan, Imayavaramban ;
Larochelle, Catherine ;
Lawrence, Catherine B. ;
Li, Lin ;
Lindner, Volkhard ;
Liu, Xian-De ;
Lopez-Castejon, Gloria ;
Loudon, Andrew ;
Lowe, Jenna ;
Jerome-Majewska, Loydie A. ;
Matsusaka, Taiji .
GENOME BIOLOGY, 2019, 20 (01)
[35]   Multiple Applications of a Transient CRISPR-Cas9 Coupled with Electroporation (TRACE) System in the Cryptococcus neoformans Species Complex [J].
Fan, Yumeng ;
Lin, Xiaorong .
GENETICS, 2018, 208 (04) :1357-1372
[36]   Xenogeneic transplantation and tolerance in the era of CRISPR-Cas9 [J].
Cowan, Peter J. ;
Hawthorne, Wayne J. ;
Nottle, Mark B. .
CURRENT OPINION IN ORGAN TRANSPLANTATION, 2019, 24 (01) :5-11
[37]   CRISPR-Cas9 in the Tailoring of Genetically Engineered Animals [J].
Urban, Wiktoria ;
Kropacz, Marta ;
Lach, Maksymilian ;
Jankowska, Anna .
CURRENT ISSUES IN MOLECULAR BIOLOGY, 2025, 47 (05)
[38]   CRISPR-CAS9 RNP EDITING OF PRIMARY T CELLS USING THE FLOWFECT® TRANSFECTION TECHNOLOGY PLATFORM [J].
Zhao, J. ;
Lewis, G. ;
Baladiang, M. ;
Hallinan, A. ;
Sido, J. ;
Beighley, R. ;
Latouche, E. ;
Hang, T. ;
Grant, B. ;
Buie, C. ;
Garcia, P. A. .
CYTOTHERAPY, 2022, 24 (05) :S132-S132
[39]   Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique [J].
Bin Xiong ;
Zhongkang Li ;
Li Liu ;
Dongdong Zhao ;
Xueli Zhang ;
Changhao Bi .
Biotechnology for Biofuels, 11
[40]   Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants [J].
Burle-Caldas, Gabriela Assis ;
Soares-Simoes, Melissa ;
Lemos-Pechnicki, Laiane ;
DaRocha, Wanderson Duarte ;
Teixeira, Santuza M. R. .
INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2018, 48 (08) :591-596