Temporal link prediction based on node dynamics

被引:4
|
作者
Wu, Jiayun [1 ]
He, Langzhou [1 ]
Jia, Tao [1 ]
Tao, Li [1 ]
机构
[1] Southwest Univ, Coll Comp & Informat Sci, Chongqing 400715, Peoples R China
关键词
Temporal network; Link prediction; Node dynamics; Network evolution; Interpretability; NETWORKS; PREDICTABILITY;
D O I
10.1016/j.chaos.2023.113402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Temporal link prediction (TLP) aims to predict future links and is attracting increasing attention. The diverse interaction patterns and nonlinear nature of temporal networks make it challenging to design high-accuracy general prediction algorithms. Black-box models such as network embeddings and graph neural networks have gradually become the mainstream for TLP, mainly due to their high prediction accuracy. However, a good TLP algorithm also needs to assist us in exploring the network evolution mechanism. Accuracy-oriented black-box methods cannot sufficiently explain the evolution mechanism because of their low interpretability. Hence there is a need for a high-accuracy white-box TLP method. In this paper, we turn the perspective of link prediction to node itself, a more microscopic level whose dynamic nature we take to predict future links. Two dynamic properties - node activity and node loyalty - are extracted and quantified. Activity is the basic ability of a node to obtain links, and loyalty is its ability to maintain its current link state. Based on the above two properties, we propose a Develop-Maintain Activity Backbone (DMAB) model as our TLP algorithm. Comparative experiments with six state-of-the-art black-box methods on 12 real networks illustrate that DMAB has excellent prediction performance and well captures network evolution mechanisms.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Temporal Network Link Prediction Based on the Optimized Exponential Smoothing Model and Node Interaction Entropy
    Tian, Songyuan
    Zhang, Sheng
    Mao, Hongmei
    Liu, Rui
    Xiong, Xiaowu
    SYMMETRY-BASEL, 2023, 15 (06):
  • [2] Link prediction based on node centrality
    Li, LanXi
    Liu, Xiangchun
    Chen, Ning
    Tian, Hui
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING 2018 (ICITEE '18), 2018,
  • [3] Node Similarity Measurement and Link Prediction Algorithm in Temporal Networks
    Chen D.-M.
    Yuan Z.-Z.
    Huang X.-Y.
    Wang D.-Q.
    Wang, Dong-Qi (wangdq@swc.neu.edu.cn), 1600, Northeast University (41): : 29 - 34and43
  • [4] The node influence for link prediction based on triadic closure structure
    Zeng Linyi
    Li Shugang
    PROCEEDINGS OF 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2017, : 761 - 766
  • [5] Sampling-based algorithm for link prediction in temporal networks
    Ahmed, Nahia Mohamed
    Chen, Ling
    Wang, Yulong
    Li, Bin
    Li, Yun
    Liu, Wei
    INFORMATION SCIENCES, 2016, 374 : 1 - 14
  • [6] A Link Prediction Approach in Temporal Networks Based on Game Theory
    Liu L.
    Wang Y.
    Ni Q.
    Cao J.
    Bu Z.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (09): : 1953 - 1964
  • [7] Accurate similarity index based on activity and connectivity of node for link prediction
    Li, Longjie
    Qian, Lvjian
    Wang, Xiaoping
    Luo, Shishun
    Chen, Xiaoyun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2015, 29 (17):
  • [8] Link prediction based on node weighting in complex networks
    Oğuz Fındık
    Emrah Özkaynak
    Soft Computing, 2021, 25 : 2467 - 2482
  • [9] Link prediction based on node weighting in complex networks
    Findik, Oguz
    Ozkaynak, Emrah
    SOFT COMPUTING, 2021, 25 (03) : 2467 - 2482
  • [10] Link Prediction of Directed Network Based on Node Importance
    Du, Luomin
    Tang, Yan
    Yuan, Yuan
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,