Numerical investigation of transmission probability characteristics in the first low-density region of a laser wakefield accelerator

被引:0
作者
John, Benzi [1 ]
Middleman, Keith [2 ]
Malyshev, Oleg B. [2 ]
Gu, Xiaojun [1 ]
Symes, Daniel R. [3 ]
Emerson, David R. [1 ]
机构
[1] STFC Daresbury Lab, Sci Comp Dept, Warrington WA4 4AD, England
[2] ASTeC, STFC Daresbury Lab, Warrington WA4 4AD, England
[3] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, England
基金
英国科学技术设施理事会;
关键词
DSMC; TPMC; Laser wakefield accelerator; Transmission probability;
D O I
10.1007/s10404-023-02661-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transmission probability is an important parameter in vacuum science and technology that needs to be accurately characterised for system design. Typically, this is computed using the test particle Monte Carlo method. However, this approach is valid only in the free molecular regime. In this work, we propose a methodology to compute transmission probability using the direct simulation Monte Carlo method, which makes possible the characterisation of vacuum devices for a wider range of operating pressure conditions from viscous to molecular flow regimes. This is applied to study the gas expansion characteristics in the first low-density drift region of a laser wakefield accelerator. Validations are first made by comparing the results against the test particle Monte Carlo method in the free molecular regime. The transmission probability is then characterised for a wide range of operating conditions, revealing interesting insights helpful towards not only a fundamental understanding but also in making design considerations.
引用
收藏
页数:6
相关论文
共 11 条
[1]  
Bird G.A, 1994, MOL GAS DYNAMICS DIR
[2]   Overview of plasma-based accelerator concepts [J].
Esarey, E ;
Sprangle, P ;
Krall, J ;
Ting, A .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1996, 24 (02) :252-288
[3]   Evaporation from arbitrary nanoporous membrane configurations: An effective evaporation coefficient approach [J].
John, Benzi ;
Gibelli, Livio ;
Enright, Ryan ;
Sprittles, James E. ;
Lockerby, Duncan A. ;
Emerson, David R. .
PHYSICS OF FLUIDS, 2021, 33 (03)
[4]   High-Speed Rarefied Flow Past a Rotating Cylinder: The Inverse Magnus Effect [J].
John, Benzi ;
Gu, Xiao-Jun ;
Barber, Robert W. ;
Emerson, David R. .
AIAA JOURNAL, 2016, 54 (05) :1670-1681
[5]   Investigation of Heat and Mass Transfer in a Lid-Driven Cavity Under Nonequilibrium Flow Conditions [J].
John, Benzi ;
Gu, Xiao-Jun ;
Emerson, David R. .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2010, 58 (05) :287-303
[6]   Introduction to MOLFLOW plus : New graphical processing unit-based Monte Carlo code for simulating molecular flows and for calculating angular coefficients in the compute unified device architecture environment [J].
Kersevan, R. ;
Pons, J. -L. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2009, 27 (04) :1017-1023
[7]   GeV electron beams from a centimetre-scale accelerator [J].
Leemans, W. P. ;
Nagler, B. ;
Gonsalves, A. J. ;
Toth, Cs. ;
Nakamura, K. ;
Geddes, C. G. R. ;
Esarey, E. ;
Schroeder, C. B. ;
Hooker, S. M. .
NATURE PHYSICS, 2006, 2 (10) :696-699
[8]   Direct simulation Monte Carlo on petaflop supercomputers and beyond [J].
Plimpton, S. J. ;
Moore, S. G. ;
Borner, A. ;
Stagg, A. K. ;
Koehler, T. P. ;
Torczynski, J. R. ;
Gallis, M. A. .
PHYSICS OF FLUIDS, 2019, 31 (08)
[9]  
Saksaganskii G.L., 1988, Molecular Flow in Complex Vacuum Systems
[10]   On-chip integrated laser-driven particle accelerator [J].
Sapra, Neil V. ;
Yang, Ki Youl ;
Vercruysse, Dries ;
Leedle, Kenneth J. ;
Black, Dylan S. ;
England, R. Joel ;
Su, Logan ;
Trivedi, Rahul ;
Miao, Yu ;
Solgaard, Olav ;
Byer, Robert L. ;
Vuckovic, Jelena .
SCIENCE, 2020, 367 (6473) :79-+