Identification and Mitigation of Shortcomings in Direct and Indirect Liquid Cooling-Based Battery Thermal Management System

被引:25
作者
Anisha [1 ]
Kumar, Anil [1 ,2 ]
机构
[1] Delhi Technol Univ, Dept Mech Engn, Delhi 110042, India
[2] Delhi Technol Univ, Ctr Energy & Environm, Delhi 110042, India
关键词
liquid cooling; immersive cooling; cold plate; discrete tube; battery thermal management system; LITHIUM-ION BATTERY; PHASE-CHANGE MATERIALS; HEAT-TRANSFER; COLD PLATE; PERFORMANCE; PACK; WATER; DESIGN; CELL; ENHANCEMENT;
D O I
10.3390/en16093857
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electric vehicles (EVs) have become a viable solution to the emerging global climate crisis. Rechargeable battery packs are the basic unit of the energy storage system of these vehicles. The battery thermal management system (BTMS) is the primary control unit of the energy source of the vehicles. EV performance is governed by specific power, charging/discharging rate, specific energy, and cycle life of the battery packs. Nevertheless, these parameters are affected by temperature, making thermal management the most significant factor for the performance of a battery pack in an EV. Although the BTMS has acquired plenty of attention, research on the efficiency of the liquid cooling-based BTMS for actual drive cycles has been minimal. Liquid cooling, with appropriate configuration, can provide up to 3500 times more efficient cooling than air cooling. Direct/immersive and indirect liquid cooling are the main types of liquid cooling systems. Immersive/direct cooling utilizes the technique of direct contact between coolant and battery surface, which could provide larger heat transfer across the pack; however, parameters such as leakage, configuration, efficiency, etc., are needed to be considered. Indirect cooling techniques include cold plates, liquid jackets, discrete tubes, etc. It could result in complex configuration or thermal non-uniformity inside the pack. The paper intends to contribute to the alleviation of these gaps by studying various techniques, including different configurations, coolant flow, nanoparticles, varying discharging rates, different coolants, etc. This paper provides a comprehensive perspective of various techniques employed in liquid cooling battery packs, identifying the shortcomings in direct/immersive and indirect liquid cooling systems and discussing their mitigation strategies.
引用
收藏
页数:21
相关论文
共 82 条
[1]   Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
JOURNAL OF POWER SOURCES, 2017, 363 :291-303
[2]   Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ELECTROCHIMICA ACTA, 2017, 247 :171-182
[3]   Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI [J].
Alajmi, Reema Gh .
ENERGY POLICY, 2021, 156
[4]   A parametric study for optimization of minichannel based battery thermal management system [J].
An, Z. ;
Shah, K. ;
Jia, L. ;
Ma, Y. .
APPLIED THERMAL ENGINEERING, 2019, 154 (593-601) :593-601
[5]   Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel [J].
An, Zhoujian ;
Jia, Li ;
Li, Xuejiao ;
Ding, Yong .
APPLIED THERMAL ENGINEERING, 2017, 117 :534-543
[6]   Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system [J].
Basu, Suman ;
Hariharan, Krishnan S. ;
Kolake, Subramanya Mayya ;
Song, Taewon ;
Sohn, Dong Kee ;
Yeo, Taejung .
APPLIED ENERGY, 2016, 181 :1-13
[7]   Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid [J].
Beheshti, Amir ;
Shanbedi, Mehdi ;
Heris, Saeed Zeinali .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 118 (03) :1451-1460
[8]   Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow [J].
Cao, Wenjiong ;
Zhao, Chunrong ;
Wang, Yiwei ;
Dong, Ti ;
Jiang, Fangming .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 138 :1178-1187
[9]   Thermal analysis of lithium-ion batteries [J].
Chen, SC ;
Wan, CC ;
Wang, YY .
JOURNAL OF POWER SOURCES, 2005, 140 (01) :111-124
[10]   Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles [J].
Chung, Yoong ;
Kim, Min Soo .
ENERGY CONVERSION AND MANAGEMENT, 2019, 196 :105-116