Artificial Intelligence Applications in Glioma With 1p/19q Co-Deletion: A Systematic Review

被引:7
作者
Zhang, Simin [2 ]
Yin, Lijuan [3 ]
Ma, Lu [4 ]
Sun, Huaiqiang [1 ,2 ]
机构
[1] Sichuan Univ, Huaxi MR Res Ctr HMRRC, Dept Radiol, West China Hosp, Chengdu 610041, Peoples R China
[2] Sichuan Univ, Huaxi MR Res Ctr HMRRC, Dept Radiol, West China Hosp, Chengdu, Peoples R China
[3] Sichuan Univ, Dept Pathol, West China Hosp, Chengdu, Peoples R China
[4] Sichuan Univ, Dept Neurosurg, West China Hosp, Chengdu, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial intelligence; machine learning; deep learning; 1p; 19q co-deletion; magnetic resonance imaging; glioma; CENTRAL-NERVOUS-SYSTEM; LOWER-GRADE GLIOMAS; CLASSIFICATION; GLIOBLASTOMA; RESECTION; IMPACT; TUMORS; IDH;
D O I
10.1002/jmri.28737
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
As an important genomic marker for oligodendrogliomas, early determination of 1p/19q co-deletion status is critical for guiding therapy and predicting prognosis in patients with glioma. The purpose of this study is to systematically review the literature concerning the magnetic resonance imaging (MRI) with artificial intelligence (AI) methods for predicting 1p/19q co-deletion status in glioma. PubMed, Scopus, Embase, and IEEE Xplore were searched in accordance with the Preferred Reporting Items for systematic reviews and meta-analyses guidelines. Methodological quality of studies was assessed according to the Quality Assessment of Diagnostic Accuracy Studies-2. Finally, 28 studies were included in the quantitative analysis. Diagnostic test accuracy reached an area under the ROC curve of 0.71-0.98 were reported in 24 studies. The remaining four studies with no available AUC provided an accuracy of 0.75-0. 89. The included studies varied widely in terms of imaging sequences, input features, and modeling methods. The current review highlighted that integrating MRI with AI technology is a potential tool for determination 1p/19q status pre-operatively and noninvasively, which can possibly help clinical decision-making. However, the reliability and feasibility of this approach still need to be further validated and improved in a real clinical setting. Evidence Level2. Technical Efficacy2.
引用
收藏
页码:1338 / 1352
页数:15
相关论文
共 66 条
[1]   Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence [J].
Akkus, Zeynettin ;
Ali, Issa ;
Sedlar, Jiri ;
Agrawal, Jay P. ;
Parney, Ian F. ;
Giannini, Caterina ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :469-476
[2]   Domain Mapping and Deep Learning from Multiple MRI Clinical Datasets for Prediction of Molecular Subtypes in Low Grade Gliomas [J].
Ali, Muhaddisa Barat ;
Gu, Irene Yu-Hua ;
Berger, Mitchel S. ;
Pallud, Johan ;
Southwell, Derek ;
Widhalm, Georg ;
Roux, Alexandre ;
Vecchio, Tomas Gomez ;
Jakola, Asgeir Store .
BRAIN SCIENCES, 2020, 10 (07) :1-20
[3]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[4]  
Bakas Spyridon, 2016, Brainlesion, V9556, P144, DOI [10.1007/978-3-319-30858-6_1, 10.1007/978-3-319-30858-6_13]
[5]   Genetics of Glioblastoma: A Window into Its Imaging and Histopathologic Variability [J].
Belden, Clifford J. ;
Valdes, Pablo A. ;
Ran, Cong ;
Pastel, David A. ;
Harris, Brent T. ;
Fadul, Camilo E. ;
Israel, Mark A. ;
Paulsen, Keith ;
Roberts, David W. .
RADIOGRAPHICS, 2011, 31 (06) :1717-1740
[6]   The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study [J].
Broen, Martinus P. G. ;
Smits, Marion ;
Wijnenga, Maarten M. J. ;
Dubbink, Hendrikus J. ;
Anten, Monique H. M. E. ;
Schijns, Olaf E. M. G. ;
Beckervordersandforth, Jan ;
Postma, Alida A. ;
van den Bent, Martin J. .
NEURO-ONCOLOGY, 2018, 20 (10) :1393-1399
[7]   The FDA NIH Biomarkers, EndpointS, and other Tools (BEST) resource in neuro-oncology [J].
Cagney, Daniel N. ;
Sul, Joohee ;
Huang, Raymond Y. ;
Ligon, Keith L. ;
Wen, Patrick Y. ;
Alexander, Brian M. .
NEURO-ONCOLOGY, 2018, 20 (09) :1162-1172
[8]   Development and external validation of a non-invasive molecular status predictor of chromosome 1p/19q co-deletion based on MRI radiomics analysis of Low Grade Glioma patients [J].
Casale, Roberto ;
Lavrova, Elizaveta ;
Sanduleanu, Sebastian ;
Woodruff, Henry C. ;
Lambin, Philippe .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 139
[9]   Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas [J].
Chang, P. ;
Grinband, J. ;
Weinberg, B. D. ;
Bardis, M. ;
Khy, M. ;
Cadena, G. ;
Su, M. -Y. ;
Cha, S. ;
Filippi, C. G. ;
Bota, D. ;
Baldi, P. ;
Poisson, L. M. ;
Jain, R. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (07) :1201-1207
[10]   Fully Convolutional Deep Residual Neural Networks for Brain Tumor Segmentation [J].
Chang, Peter D. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, 2016, 2016, 10154 :108-118