Sodium Stoichiometry Tuning of the Biphasic-NaxMnO2 Cathode for High-Performance Sodium-Ion Batteries

被引:12
|
作者
Zhang, Yiming [1 ]
Tang, Dafu [1 ]
Liu, Yuanyuan [1 ]
Wang, Jin [1 ]
Li, Zhipeng [1 ]
Li, Xin [1 ]
Han, Guang [2 ]
Wei, Qiulong [1 ]
Qu, Baihua [2 ]
机构
[1] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Coll Mat, Xiamen 361005, Peoples R China
[2] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
cathodes; high-power; layered; tunnel; sodium storage mechanism; sodium-ion batteries; TRANSITION-METAL OXIDES; LAYERED OXIDES; NA0.44MNO2; LITHIUM; STORAGE; ENERGY;
D O I
10.1002/smll.202301141
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) are promising alternatives for large-scale energy storage owing to the rich resource and cost effectiveness. However, there are limitations of suitable low-cost, high-rate cathode materials for fast charging and high-power delivery in grid systems. Herein, a biphasic tunnel/layered 0.80Na(0.44)MnO(2)/0.20Na(0.70)MnO(2) (80T/20L) cathode delivering exceptional rate performance through subtly regulating the sodium and manganese stoichiometry is reported. It delivers a reversible capacity of 87 mAh g(-1) at 4 A g(-1) (33 C), much higher than that of tunnel Na0.44MnO2 (72 mAh g(-1)) and layered Na0.70MnO2 (36 mAh g(-1)). It proves that the one-pot synthesized 80T/20L is able to suppress the deactivation of L-Na0.70MnO2 under air-exposure, which improves the specific capacity and cycling stability. Based on electrochemical kinetics analysis, the electrochemical storage of 80T/20L is mainly based on pseudocapacitive surface-controlled process. The thick film of 80T/20L cathode (a single-side mass loading over 10 mg cm(-2)) also has superior properties of pseudocapacitive response (over 83.5% at a low sweep rate of 1 mV s(-1)) and excellent rate performance. In this sense, the 80T/20L cathode with outstanding comprehensive performance could meet the requirements of high-performance SIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Progress in defect engineering of high-performance Prussian blue analogues as cathode materials for sodium-ion batteries
    Huang, Yifan
    Mu, Wenning
    Bi, Xiaolong
    Hou, Zhigang
    Lei, Xuefei
    Wang, Qing
    Luo, Shaohua
    JOURNAL OF ENERGY STORAGE, 2025, 111
  • [32] Copper ferricyanide particles modify Prussian blue and its analogues on the surface as cathode for high-performance sodium-ion batteries
    Yang, Mingxuan
    Wang, Kai
    Liu, Qiming
    Cao, Shiyue
    Wang, Jie
    Liu, Yirui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 973
  • [33] Flash-pyrolyzed coal char as a high-performance anode for sodium-ion batteries
    Moon, Jaron, V
    Karimi, Zahra
    Prlina, Alex
    Van Ginkel, Chanel
    Horlacher, Danielle M.
    Eddings, Eric G.
    Warren, Roseanne
    FUEL PROCESSING TECHNOLOGY, 2023, 252
  • [34] Design of High-Performance Defective Graphite-Type Anodes for Sodium-Ion Batteries
    Tian, Yu
    Yang, Hua
    Zeng, Yujie
    Qi, Yanyuan
    Wang, Wenxuan
    Chen, Huaican
    Yin, Wen
    Ke, Yubin
    Jian, Zelang
    Kan, Wang Hay
    Chen, Wen
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (07) : 3854 - 3861
  • [35] A Novel Pentanary Metal Oxide Cathode with P2/O3 Biphasic Structure for High-Performance Sodium-Ion Batteries
    Liang, Xinghui
    Sun, Yang-Kook
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (44)
  • [36] Sodium-deficient O3-Na0.75Fe0.5-xCuxMn0.5O2 as high-performance cathode materials of sodium-ion batteries
    Wei, Ting-Ting
    Zhang, Nan
    Zhao, Yu-Shen
    Zhu, Yan-Rong
    Yi, Ting-Feng
    COMPOSITES PART B-ENGINEERING, 2022, 238
  • [37] Perspective Cathode Materials for Sodium-Ion Batteries
    Kosova, N., V
    Semykina, D. O.
    CHEMISTRY FOR SUSTAINABLE DEVELOPMENT, 2021, 29 (03): : 333 - 345
  • [38] MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries
    Liu, Yongchang
    Zhang, Ning
    Yu, Chuanming
    Jiao, Lifang
    Chen, Jun
    NANO LETTERS, 2016, 16 (05) : 3321 - 3328
  • [39] Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries
    Chuanping Li
    Min Qiu
    Ruiling Li
    Xuan Li
    Manxi Wang
    Jiabo He
    Ganggang Lin
    Liren Xiao
    Qingrong Qian
    Qinghua Chen
    Junxiong Wu
    Xiaoyan Li
    Yiu-Wing Mai
    Yuming Chen
    Advanced Fiber Materials, 2022, 4 : 43 - 65
  • [40] High capacity sodium-rich layered oxide cathode for sodium-ion batteries
    Guo, Gen-Cai
    Wang, Changhao
    Ming, Bang-Ming
    Luo, Si-Wei
    Su, Heng
    Wang, Bo-Ya
    Zhang, Ming
    Yu, Hai-Jun
    Wang, Ru-Zhi
    CHINESE PHYSICS B, 2018, 27 (11)