Stability for an inverse source problem of the diffusion equation

被引:0
作者
Yao, Xiaohua [1 ]
Zhao, Yue [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
the diffusion equation; resolvent estimate; inverse source problem; stability; exact observability bound; INCREASING STABILITY;
D O I
10.1088/1402-4896/acab8e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove an increasing stability estimate for an inverse source problem of the diffusion equation with a nontrivial variable absorption coefficient in R3. The stability estimate consists of two parts: the Lipschitz type data discrepancy and the high frequency tail of the source function. The latter decreases when the upper bound of the frequency increases. The proof is based on an exact observability bound for the heat equation and the resolvent estimates for the elliptic operator. In particular, to justify the Fourier transform and obtain Plancherel's theorem for the time-domain Cauchy data on the boundary, we derive certain appropriate time decay estimates for the heat equation using semigroup theory.
引用
收藏
页数:12
相关论文
共 27 条
  • [1] Agmon S., 1975, ANN SCULO NORM SUP P, V2, P151
  • [2] The inverse source problem for Maxwell's equations
    Albanese, R.
    Monk, P. B.
    [J]. INVERSE PROBLEMS, 2006, 22 (03) : 1023 - 1035
  • [3] Logarithmic stability in determining two coefficients in a dissipative wave equation. Extensions to clamped Euler-Bernoulli beam and heat equations
    Ammari, Kais
    Choulli, Mourad
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) : 3344 - 3365
  • [4] Optical tomography: forward and inverse problems
    Arridge, Simon R.
    Schotland, John C.
    [J]. INVERSE PROBLEMS, 2009, 25 (12)
  • [5] Optical imaging in medicine .2. Modelling and reconstruction
    Arridge, SR
    Hebden, JC
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (05) : 841 - 853
  • [6] Nonuniqueness in diffusion-based optical tomography
    Arridge, SR
    Lionheart, WRB
    [J]. OPTICS LETTERS, 1998, 23 (11) : 882 - 884
  • [7] Stability for the inverse source problems in elastic and electromagnetic waves
    Bao, Gang
    Li, Peijun
    Zhao, Yue
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 134 : 122 - 178
  • [8] A multi-frequency inverse source problem
    Bao, Gang
    Lin, Junshan
    Triki, Faouzi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (12) : 3443 - 3465
  • [9] Increasing stability in the inverse source problem with many frequencies
    Cheng, Jin
    Isakov, Victor
    Lu, Shuai
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) : 4786 - 4804
  • [10] Choulli M, 2009, MATH APPL-BERLIN, V65, P1, DOI 10.1007/978-3-642-02460-3