Spin-polarized hot electron transport versus spin pumping mediated by local heating

被引:5
作者
Beens, M. [1 ]
de Mare, K. A. [1 ]
Duine, R. A. [1 ,2 ]
Koopmans, B. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
ultrafast spintronics; femtomagnetism; laser-induced spin transport; magnetic heterostructures; ULTRAFAST DEMAGNETIZATION; DYNAMICS;
D O I
10.1088/1361-648X/aca24e
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A 'toy model'-aimed at capturing the essential physics-is presented that jointly describes spin-polarized hot electron transport and spin pumping driven by local heating. These two processes both contribute to spin-current generation in laser-excited magnetic heterostructures. The model is used to compare the two contributions directly. The spin-polarized hot electron current is modeled as one generation of hot electrons with a spin-dependent excitation and relaxation scheme. Upon decay, the excess energy of the hot electrons is transferred to a thermalized electron bath. The elevated electron temperature leads to an increased rate of electron-magnon scattering processes and yields a local accumulation of spin. This process is dubbed as spin pumping by local heating. The built-up spin accumulation is effectively driven out of the ferromagnetic system by (interfacial) electron transport. Within our model, the injected spin current is dominated by the contribution resulting from spin pumping, while the hot electron spin current remains relatively small. We derive that this observation is related to the ratio between the Fermi temperature and Curie temperature, and we show what other fundamental parameters play a role.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Spin-Polarized Current Driven Vortex-Pair Switching in a Magnetic Ellipse [J].
Zhang, Hong ;
Liu, Yaowen .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (02) :1063-1066
[42]   Magneto-optical properties of Au upon the injection of hot spin-polarized electrons across Fe/Au(001) interfaces [J].
Alekhin, A. ;
Razdolski, I. ;
Berritta, M. ;
Buerstel, D. ;
Temnov, V. ;
Diesing, D. ;
Bovensiepen, U. ;
Woltersdorf, G. ;
Oppeneer, P. M. ;
Melnikov, A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (12)
[43]   Nonlinear domain-wall velocity enhancement by spin-polarized electric current [J].
Beach, G. S. D. ;
Knutson, C. ;
Nistor, C. ;
Tsoi, M. ;
Erskine, J. L. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[44]   Teacups, a Python']Python Package for the Simulation of Time-Resolved EPR Spectra of Spin-Polarized Multi-Spin Systems [J].
Quintes, Theresia ;
Weber, Stefan ;
Richert, Sabine .
JOURNAL OF PHYSICAL CHEMISTRY A, 2025, 129 (14) :3375-3388
[45]   Two-dimensional pentagonal crystals and possible spin-polarized Dirac dispersion relations [J].
Tang, Chi-Pui ;
Xiong, Shi-Jie ;
Shi, Wu-Jun ;
Cao, Jie .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (11)
[46]   Large-scale spin-polarized DFT calculation of electronic properties of GaAs with defects [J].
Escano, Mary Clare ;
Tien Quang Nguyen ;
Osanai, Yu ;
Kasai, Hideaki ;
Tani, Masahiko .
MATERIALS RESEARCH EXPRESS, 2019, 6 (05)
[47]   Spin-Polarized Charge Separation in a Photoexcited Transition Metal Dichalcogenide Heterobilayer at Room Temperature [J].
Li, Qiuyang ;
Huber, Lucas ;
Nuckolls, Colin ;
Zhu, Xiaoyang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (37) :15795-15800
[48]   Oscillation frequency of magnetic vortex induced by spin-polarized current in a confined nanocontact structure [J].
Liu, Yan ;
Li, Huanan ;
Hu, Yong ;
Du, An .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (09)
[49]   Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: Asymptotic analysis, numerics, and experiments [J].
Susanto, H. ;
Schires, K. ;
Adams, M. J. ;
Henning, I. D. .
PHYSICAL REVIEW A, 2015, 92 (06)
[50]   Anomalous transport from hot quasiparticles in interacting spin chains [J].
Gopalakrishnan, Sarang ;
Vasseur, Romain .
REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (03)