Modular quasi-Hopf algebras and groups with one involution

被引:0
|
作者
Mason, Geoffrey [1 ]
Ng, Siu-Hung [2 ]
机构
[1] UC Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
关键词
VERTEX OPERATOR-ALGEBRAS; FUSION RULES; REPRESENTATIONS;
D O I
10.1016/j.jpaa.2022.107264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a previous paper the authors constructed a class of quasi-Hopf algebras D omega(G, A) associated to a finite group G, generalizing the twisted quantum double construction. We gave necessary and sufficient conditions, cohomological in nature, that the corresponding module category Rep(D-omega(G, A)) is a modular tensor category. In the present paper we verify the cohomological conditions for the class of groups G which contain a unique involution, and in this way we obtain an explicit construction of a new class of modular quasi-Hopf algebras. We develop the basic theory for general finite groups G, and also a parallel theory concerned with the question of when Rep(D-omega(G, A)) is super-modular rather than modular. We give some explicit examples involving binary polyhedral groups and some sporadic simple groups.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:26
相关论文
共 11 条
  • [1] SL(2, Z)-action for ribbon quasi-Hopf algebras
    Farsad, V.
    Gainutdinov, A. M.
    Runkel, I.
    JOURNAL OF ALGEBRA, 2019, 522 : 243 - 308
  • [2] A quasi-Hopf algebra for the triplet vertex operator algebra
    Creutzig, Thomas
    Gainutdinov, Azat M.
    Runkel, Ingo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (03)
  • [3] The symplectic fermion ribbon quasi-Hopf algebra and the SL(2, Z)-action on its centre
    Farsad, V
    Gainutdinov, A. M.
    Runkel, I
    ADVANCES IN MATHEMATICS, 2022, 400
  • [4] Symplectic fermions and a quasi-Hopf algebra structure on Uisl(2)
    Gainutdinov, A. M.
    Runkel, I.
    JOURNAL OF ALGEBRA, 2017, 476 : 415 - 458
  • [5] Representation rings of classical groups and Hopf algebras
    Zhou, J
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (05) : 461 - 477
  • [6] Pointed Hopf Algebras-from Enveloping Algebras to Quantum Groups and Beyond
    Radford, David E.
    ACTA APPLICANDAE MATHEMATICAE, 2009, 108 (01) : 141 - 155
  • [7] Modular invariant Frobenius algebras from ribbon Hopf algebra automorphisms
    Fuchs, Jurgen
    Schweigert, Christoph
    Stigner, Carl
    JOURNAL OF ALGEBRA, 2012, 363 : 29 - 72
  • [8] Unbounded derivations and *-automorphisms groups of Banach quasi *-algebras
    Adamo, Maria Stella
    Trapani, Camillo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (05) : 1711 - 1729
  • [9] ON SEMISIMPLE HOPF ALGEBRAS WITH FEW REPRESENTATIONS OF DIMENSION GREATER THAN ONE
    Artamonov, V. A.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2010, 51 (02): : 91 - 105
  • [10] EXOTIC GROUP C* -ALGEBRAS OF SIMPLE LIE GROUPS WITH REAL RANK ONE
    De Laat, Tim
    Siebenand, Timo
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (05) : 2117 - 2136